基于联邦学习管理的互联自动驾驶汽车零接触MEC资源

Carlos Ruiz De Mendoza, C. Cervelló-Pastor
{"title":"基于联邦学习管理的互联自动驾驶汽车零接触MEC资源","authors":"Carlos Ruiz De Mendoza, C. Cervelló-Pastor","doi":"10.1109/NetSoft57336.2023.10175494","DOIUrl":null,"url":null,"abstract":"This paper presents a Ph.D. thesis proposal for a novel solution in optimizing the placement of Connected Autonomous Vehicles (CAVs) Virtual Network Functions (VNFs) requests in Edge Computing (EC) resources. Our Federated Deep Reinforcement Learning (FDRL) proposal will be designed to improve computation efficiency while minimizing service rejections and maximizing resource utilization, and ensuring the least costly path for CAVs. This approach will also be privacy-preserving, ensuring sensitive data remains secure and enables reliable, low-latency communication between CAVs, EC nodes, and the federated server. By utilizing distributed learning capabilities, FDRL allows multiple vehicles to learn from their local experience and make collective decisions, improving network systems performance.","PeriodicalId":223208,"journal":{"name":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-Touch MEC Resources for Connected Autonomous Vehicles Managed by Federated Learning\",\"authors\":\"Carlos Ruiz De Mendoza, C. Cervelló-Pastor\",\"doi\":\"10.1109/NetSoft57336.2023.10175494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Ph.D. thesis proposal for a novel solution in optimizing the placement of Connected Autonomous Vehicles (CAVs) Virtual Network Functions (VNFs) requests in Edge Computing (EC) resources. Our Federated Deep Reinforcement Learning (FDRL) proposal will be designed to improve computation efficiency while minimizing service rejections and maximizing resource utilization, and ensuring the least costly path for CAVs. This approach will also be privacy-preserving, ensuring sensitive data remains secure and enables reliable, low-latency communication between CAVs, EC nodes, and the federated server. By utilizing distributed learning capabilities, FDRL allows multiple vehicles to learn from their local experience and make collective decisions, improving network systems performance.\",\"PeriodicalId\":223208,\"journal\":{\"name\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSoft57336.2023.10175494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft57336.2023.10175494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一项博士论文提案,该提案旨在优化连接自动驾驶汽车(cav)虚拟网络功能(VNFs)请求在边缘计算(EC)资源中的放置。我们的联邦深度强化学习(FDRL)提案旨在提高计算效率,同时最大限度地减少服务拒绝和最大化资源利用率,并确保自动驾驶汽车的成本最低的路径。这种方法还将保护隐私,确保敏感数据保持安全,并支持cav、EC节点和联邦服务器之间可靠、低延迟的通信。通过利用分布式学习能力,FDRL允许多辆车从本地经验中学习并做出集体决策,从而提高网络系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zero-Touch MEC Resources for Connected Autonomous Vehicles Managed by Federated Learning
This paper presents a Ph.D. thesis proposal for a novel solution in optimizing the placement of Connected Autonomous Vehicles (CAVs) Virtual Network Functions (VNFs) requests in Edge Computing (EC) resources. Our Federated Deep Reinforcement Learning (FDRL) proposal will be designed to improve computation efficiency while minimizing service rejections and maximizing resource utilization, and ensuring the least costly path for CAVs. This approach will also be privacy-preserving, ensuring sensitive data remains secure and enables reliable, low-latency communication between CAVs, EC nodes, and the federated server. By utilizing distributed learning capabilities, FDRL allows multiple vehicles to learn from their local experience and make collective decisions, improving network systems performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Network Management in Multi-Domain 6G Networks based on Graph Neural Networks Showcasing In-Switch Machine Learning Inference Latency-Aware Kubernetes Scheduling for Microservices Orchestration at the Edge DRL-based Service Migration for MEC Cloud-Native 5G and beyond Networks Hierarchical Control Plane Framework for Multi-Domain TSN Orchestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1