基于计算机视觉的发育行为筛查认知评估

Chi-yu Chen, Po-Chien Hsu, Tao Chang, Huan Ho, Min-Chun Hu, Chi-Chun Lee, Hui-Ju Chen, M. Ko, Chia-Fan Lee, Pei-Yi Wang
{"title":"基于计算机视觉的发育行为筛查认知评估","authors":"Chi-yu Chen, Po-Chien Hsu, Tao Chang, Huan Ho, Min-Chun Hu, Chi-Chun Lee, Hui-Ju Chen, M. Ko, Chia-Fan Lee, Pei-Yi Wang","doi":"10.1109/ICDH55609.2022.00031","DOIUrl":null,"url":null,"abstract":"Common screening tasks for developmental-behavioral disabilities require human judgement to decide pass/fail on checklists, which possibly causes subjective biases. On the other hand, professional requirements for an assessment build a barrier for the accessibility to such screening tests. Therefore, we applied a combination of computer vision techniques to automatically perform cognition assessment on toddlers. To tackle insufficient data, multi-person scene, and unexpected movements of toddlers, YOLOv5, Mediapipe, LOFTR, and depth prediction model trained from Mannequin Challenge dataset are utilized to accurately focus our detection model on assigned areas to generate better results. We believe that similar concepts could be further extended to other sub-fields in childhood developmental-behavioral screening and improve clinical practice.","PeriodicalId":120923,"journal":{"name":"2022 IEEE International Conference on Digital Health (ICDH)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer Vision Based Cognition Assessment for Developmental-Behavioral Screening\",\"authors\":\"Chi-yu Chen, Po-Chien Hsu, Tao Chang, Huan Ho, Min-Chun Hu, Chi-Chun Lee, Hui-Ju Chen, M. Ko, Chia-Fan Lee, Pei-Yi Wang\",\"doi\":\"10.1109/ICDH55609.2022.00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Common screening tasks for developmental-behavioral disabilities require human judgement to decide pass/fail on checklists, which possibly causes subjective biases. On the other hand, professional requirements for an assessment build a barrier for the accessibility to such screening tests. Therefore, we applied a combination of computer vision techniques to automatically perform cognition assessment on toddlers. To tackle insufficient data, multi-person scene, and unexpected movements of toddlers, YOLOv5, Mediapipe, LOFTR, and depth prediction model trained from Mannequin Challenge dataset are utilized to accurately focus our detection model on assigned areas to generate better results. We believe that similar concepts could be further extended to other sub-fields in childhood developmental-behavioral screening and improve clinical practice.\",\"PeriodicalId\":120923,\"journal\":{\"name\":\"2022 IEEE International Conference on Digital Health (ICDH)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Digital Health (ICDH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDH55609.2022.00031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Digital Health (ICDH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH55609.2022.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发育-行为障碍的常见筛查任务需要人类的判断来决定检查表的通过/不通过,这可能会导致主观偏见。另一方面,对评估的专业要求为获得这种筛选试验造成了障碍。因此,我们结合计算机视觉技术对幼儿进行自动认知评估。为了解决数据不足、多人场景和幼儿意外动作等问题,利用YOLOv5、Mediapipe、LOFTR和从人体模型挑战数据集训练的深度预测模型,将我们的检测模型准确地集中在指定区域,以产生更好的结果。我们相信类似的概念可以进一步扩展到儿童发育-行为筛查的其他子领域,并改善临床实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computer Vision Based Cognition Assessment for Developmental-Behavioral Screening
Common screening tasks for developmental-behavioral disabilities require human judgement to decide pass/fail on checklists, which possibly causes subjective biases. On the other hand, professional requirements for an assessment build a barrier for the accessibility to such screening tests. Therefore, we applied a combination of computer vision techniques to automatically perform cognition assessment on toddlers. To tackle insufficient data, multi-person scene, and unexpected movements of toddlers, YOLOv5, Mediapipe, LOFTR, and depth prediction model trained from Mannequin Challenge dataset are utilized to accurately focus our detection model on assigned areas to generate better results. We believe that similar concepts could be further extended to other sub-fields in childhood developmental-behavioral screening and improve clinical practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing User-friendly Medical AI Applications - Methodical Development of User-centered Design Guidelines Digital Health Promotion For Fitness Enthusiasts In Africa Knowledge Management in a Healthcare Enterprise: Creation of a Digital Knowledge Repository A New Low-Cost and Accurate Diagnostic mHealth System for Patients with COVID-19 Pneumonia Detection of Erythropoietin in Blood to Uncover Doping in Sports using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1