基于强化学习的多轿厢电梯群控分配策略选择

Taichi Uraji, Kenichi Takahashi
{"title":"基于强化学习的多轿厢电梯群控分配策略选择","authors":"Taichi Uraji, Kenichi Takahashi","doi":"10.1504/IJKWI.2012.050285","DOIUrl":null,"url":null,"abstract":"This paper discusses the group control of elevators in the web monitoring system for improving efficiency and saving energy; an efficient control method for multi-car elevator using reinforcement learning is proposed. In the method, the control agent selects the best strategy among three strategies, namely distance-strategy, passenger-strategy, and zone-strategy, according to traffic flow. The control agent takes the number of total passengers and the distance from the departure floor to the destination floor of a call into account. Through experiments, the performance of the proposed method is shown; the average service time of the proposed method is compared with the average service time for the cases where the car assignment is made by each of the three strategies.","PeriodicalId":113936,"journal":{"name":"Int. J. Knowl. Web Intell.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assignment strategy selection for multi-car elevator group control using reinforcement learning\",\"authors\":\"Taichi Uraji, Kenichi Takahashi\",\"doi\":\"10.1504/IJKWI.2012.050285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the group control of elevators in the web monitoring system for improving efficiency and saving energy; an efficient control method for multi-car elevator using reinforcement learning is proposed. In the method, the control agent selects the best strategy among three strategies, namely distance-strategy, passenger-strategy, and zone-strategy, according to traffic flow. The control agent takes the number of total passengers and the distance from the departure floor to the destination floor of a call into account. Through experiments, the performance of the proposed method is shown; the average service time of the proposed method is compared with the average service time for the cases where the car assignment is made by each of the three strategies.\",\"PeriodicalId\":113936,\"journal\":{\"name\":\"Int. J. Knowl. Web Intell.\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Web Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJKWI.2012.050285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKWI.2012.050285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文论述了在网络监控系统中对电梯进行群控,以提高效率,节约能源;提出了一种基于强化学习的多轿厢电梯控制方法。在该方法中,控制代理根据交通流量,从距离策略、乘客策略和区域策略三种策略中选择最优策略。控制代理将总乘客人数和从出发层到目的地层的距离考虑在内。通过实验验证了该方法的有效性;将所提方法的平均使用时间与三种分配策略下的平均使用时间进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assignment strategy selection for multi-car elevator group control using reinforcement learning
This paper discusses the group control of elevators in the web monitoring system for improving efficiency and saving energy; an efficient control method for multi-car elevator using reinforcement learning is proposed. In the method, the control agent selects the best strategy among three strategies, namely distance-strategy, passenger-strategy, and zone-strategy, according to traffic flow. The control agent takes the number of total passengers and the distance from the departure floor to the destination floor of a call into account. Through experiments, the performance of the proposed method is shown; the average service time of the proposed method is compared with the average service time for the cases where the car assignment is made by each of the three strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOSSA: a morpho-semantic knowledge extraction system for Arabic information retrieval Learning by redesigning programs: support system for understanding design policy in software design patterns Representations of psychological function based on ontology for collaborative design of peer support services for diabetic patients Learning how to learn with knowledge building process through experiences in new employee training: a case study on learner-mentor interaction model SKACICM a method for development of knowledge management and innovation system e-KnowSphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1