{"title":"基于概念图的主观答案评价方法","authors":"Goonjan Jain, D. K. Lobiyal","doi":"10.4018/IJCSSA.2017070101","DOIUrl":null,"url":null,"abstract":"Automated evaluation systems for objective type tests already exist. However, it is challenging to make an automated evaluation system for subjective type tests. Therefore, focus of this paper is on evaluation of simple text based subjective answers using Natural Language Processing techniques. A student's answer is evaluated by comparing it with a model answer of the question. Model answers cannot exactly match with the students' answers due to variability in writing. Therefore, researchers create conceptual graphs for both student as well as model answer and compute similarity between these graphs using techniques of graph similarity measures. Based on the similarity, marks are assigned to an answer. Lastly, in this manuscript authors compare the results obtained by human graders and the proposed system using Pearson correlation coefficient. Also, comparison has been drawn between the results of proposed system with other existing evaluation systems. The experimental evaluation of the proposed system shows promising results.","PeriodicalId":277615,"journal":{"name":"Int. J. Concept. Struct. Smart Appl.","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Conceptual Graphs Based Approach for Subjective Answers Evaluation\",\"authors\":\"Goonjan Jain, D. K. Lobiyal\",\"doi\":\"10.4018/IJCSSA.2017070101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated evaluation systems for objective type tests already exist. However, it is challenging to make an automated evaluation system for subjective type tests. Therefore, focus of this paper is on evaluation of simple text based subjective answers using Natural Language Processing techniques. A student's answer is evaluated by comparing it with a model answer of the question. Model answers cannot exactly match with the students' answers due to variability in writing. Therefore, researchers create conceptual graphs for both student as well as model answer and compute similarity between these graphs using techniques of graph similarity measures. Based on the similarity, marks are assigned to an answer. Lastly, in this manuscript authors compare the results obtained by human graders and the proposed system using Pearson correlation coefficient. Also, comparison has been drawn between the results of proposed system with other existing evaluation systems. The experimental evaluation of the proposed system shows promising results.\",\"PeriodicalId\":277615,\"journal\":{\"name\":\"Int. J. Concept. Struct. Smart Appl.\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Concept. Struct. Smart Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJCSSA.2017070101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Concept. Struct. Smart Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCSSA.2017070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conceptual Graphs Based Approach for Subjective Answers Evaluation
Automated evaluation systems for objective type tests already exist. However, it is challenging to make an automated evaluation system for subjective type tests. Therefore, focus of this paper is on evaluation of simple text based subjective answers using Natural Language Processing techniques. A student's answer is evaluated by comparing it with a model answer of the question. Model answers cannot exactly match with the students' answers due to variability in writing. Therefore, researchers create conceptual graphs for both student as well as model answer and compute similarity between these graphs using techniques of graph similarity measures. Based on the similarity, marks are assigned to an answer. Lastly, in this manuscript authors compare the results obtained by human graders and the proposed system using Pearson correlation coefficient. Also, comparison has been drawn between the results of proposed system with other existing evaluation systems. The experimental evaluation of the proposed system shows promising results.