一种基于纹理特征的VVC快速CU划分算法

W. Li, Xiantao Jiang, Jiayuan Jin, Tian Song, F. Yu
{"title":"一种基于纹理特征的VVC快速CU划分算法","authors":"W. Li, Xiantao Jiang, Jiayuan Jin, Tian Song, F. Yu","doi":"10.1145/3582177.3582193","DOIUrl":null,"url":null,"abstract":"Abstract: Different from the traditional quaternary tree (QT) structure utilized in the previous generation video coding standard H.265/HEVC, a new partition structure named quadtree with nested multi-type tree (QTMT) is applied in the latest codec H.266/VVC. The introduction of QTMT brings in superior encoding performance at the cost of great time-consuming. Therefore, this paper proposes a fast coding unit (CU) partitioning algorithm based on CU texture complexity and texture direction. First, we terminate further splitting of a CU when its texture is judged as simple. Then, we use the gray level co-occurrence matrix (GLCM) to extract the texture direction of the block to decide whether to partition this CU by QT, thus terminating further MT partitions. Finally, a final partition type is selected from the four MT partitions in combination with the multi-level texture complexity and texture direction of the block. The simulation results show that the overall algorithm can significantly reduce the encoding time, while the loss of coding efficiency is reasonably low. In comparison with the reference model, the encoding time is reduced by up to 44.71%, while the BDBR is increased by only 0.84% on average.","PeriodicalId":170327,"journal":{"name":"Proceedings of the 2023 5th International Conference on Image Processing and Machine Vision","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fast CU Partitioning Algorithm Based on Texture Characteristics for VVC\",\"authors\":\"W. Li, Xiantao Jiang, Jiayuan Jin, Tian Song, F. Yu\",\"doi\":\"10.1145/3582177.3582193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: Different from the traditional quaternary tree (QT) structure utilized in the previous generation video coding standard H.265/HEVC, a new partition structure named quadtree with nested multi-type tree (QTMT) is applied in the latest codec H.266/VVC. The introduction of QTMT brings in superior encoding performance at the cost of great time-consuming. Therefore, this paper proposes a fast coding unit (CU) partitioning algorithm based on CU texture complexity and texture direction. First, we terminate further splitting of a CU when its texture is judged as simple. Then, we use the gray level co-occurrence matrix (GLCM) to extract the texture direction of the block to decide whether to partition this CU by QT, thus terminating further MT partitions. Finally, a final partition type is selected from the four MT partitions in combination with the multi-level texture complexity and texture direction of the block. The simulation results show that the overall algorithm can significantly reduce the encoding time, while the loss of coding efficiency is reasonably low. In comparison with the reference model, the encoding time is reduced by up to 44.71%, while the BDBR is increased by only 0.84% on average.\",\"PeriodicalId\":170327,\"journal\":{\"name\":\"Proceedings of the 2023 5th International Conference on Image Processing and Machine Vision\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 5th International Conference on Image Processing and Machine Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3582177.3582193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 5th International Conference on Image Processing and Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582177.3582193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:与上一代视频编码标准H.265/HEVC采用的传统四元树(QT)结构不同,最新编解码器H.266/VVC采用了一种新的分区结构——嵌套多类型树四叉树(QTMT)。QTMT的引入以耗费大量时间为代价,带来了优越的编码性能。为此,本文提出了一种基于CU纹理复杂度和纹理方向的快速编码单元(CU)划分算法。首先,当一个CU的纹理被判断为简单时,我们终止进一步的分割。然后,我们使用灰度共生矩阵(GLCM)提取块的纹理方向,以决定是否对该CU进行QT分区,从而终止进一步的MT分区。最后,结合块的多层次纹理复杂度和纹理方向,从四个MT分区中选择最终的分区类型。仿真结果表明,整体算法可以显著缩短编码时间,同时编码效率的损失也比较低。与参考模型相比,编码时间缩短了44.71%,而BDBR平均仅提高了0.84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fast CU Partitioning Algorithm Based on Texture Characteristics for VVC
Abstract: Different from the traditional quaternary tree (QT) structure utilized in the previous generation video coding standard H.265/HEVC, a new partition structure named quadtree with nested multi-type tree (QTMT) is applied in the latest codec H.266/VVC. The introduction of QTMT brings in superior encoding performance at the cost of great time-consuming. Therefore, this paper proposes a fast coding unit (CU) partitioning algorithm based on CU texture complexity and texture direction. First, we terminate further splitting of a CU when its texture is judged as simple. Then, we use the gray level co-occurrence matrix (GLCM) to extract the texture direction of the block to decide whether to partition this CU by QT, thus terminating further MT partitions. Finally, a final partition type is selected from the four MT partitions in combination with the multi-level texture complexity and texture direction of the block. The simulation results show that the overall algorithm can significantly reduce the encoding time, while the loss of coding efficiency is reasonably low. In comparison with the reference model, the encoding time is reduced by up to 44.71%, while the BDBR is increased by only 0.84% on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VVC Coding Unit Partitioning Decision based on Naive Bayes Theory Human Motion Prediction based on IMUs and MetaFormer Semi-supervised Defect Segmentation with Uncertainty-aware Pseudo-labels from Multi-branch Network A Fast CU Partitioning Algorithm Based on Texture Characteristics for VVC Attention Based BiGRU-2DCNN with Hunger Game Search Technique for Low-Resource Document-Level Sentiment Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1