利用数据结构改进分类

C. O'keefe, G. Jarrad
{"title":"利用数据结构改进分类","authors":"C. O'keefe, G. Jarrad","doi":"10.1109/IDC.2002.995419","DOIUrl":null,"url":null,"abstract":"Statistical mixture-of-experts models are often used for data analysis tasks such as clustering, regression and classification. We consider two mixture-of-experts models, the shared mixture classifier and the hierarchical mixture-of-experts classifier. We discuss the initialisation and optimisation of the structure and parameters of each classifier. In particular, we initialise the hierarchical mixture of experts classifier with the public domain OC1 decision tree software. We compare the performance of the two classifiers on four datasets, two artificial and two real, finding that the hierarchical mixture-of-experts classifier achieves superior classification performance on the testing data.","PeriodicalId":385351,"journal":{"name":"Final Program and Abstracts on Information, Decision and Control","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using structure of data to improve classification\",\"authors\":\"C. O'keefe, G. Jarrad\",\"doi\":\"10.1109/IDC.2002.995419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical mixture-of-experts models are often used for data analysis tasks such as clustering, regression and classification. We consider two mixture-of-experts models, the shared mixture classifier and the hierarchical mixture-of-experts classifier. We discuss the initialisation and optimisation of the structure and parameters of each classifier. In particular, we initialise the hierarchical mixture of experts classifier with the public domain OC1 decision tree software. We compare the performance of the two classifiers on four datasets, two artificial and two real, finding that the hierarchical mixture-of-experts classifier achieves superior classification performance on the testing data.\",\"PeriodicalId\":385351,\"journal\":{\"name\":\"Final Program and Abstracts on Information, Decision and Control\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Final Program and Abstracts on Information, Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDC.2002.995419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Final Program and Abstracts on Information, Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDC.2002.995419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

统计混合专家模型通常用于数据分析任务,如聚类、回归和分类。我们考虑了两种专家混合模型,即共享混合分类器和分层混合分类器。我们讨论了每个分类器的结构和参数的初始化和优化。特别地,我们用公共领域OC1决策树软件初始化了层次混合专家分类器。我们比较了两种分类器在四个数据集上的性能,两个人工数据集和两个真实数据集,发现层次混合专家分类器在测试数据上取得了更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using structure of data to improve classification
Statistical mixture-of-experts models are often used for data analysis tasks such as clustering, regression and classification. We consider two mixture-of-experts models, the shared mixture classifier and the hierarchical mixture-of-experts classifier. We discuss the initialisation and optimisation of the structure and parameters of each classifier. In particular, we initialise the hierarchical mixture of experts classifier with the public domain OC1 decision tree software. We compare the performance of the two classifiers on four datasets, two artificial and two real, finding that the hierarchical mixture-of-experts classifier achieves superior classification performance on the testing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision missile guidance with angle only measurements Data deterioration: using laboratory measurements for dynamic calibration The geometric significance of spectral nulls Minimally redundant maximally robust linear precoders Full autonomy of intelligent flight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1