{"title":"奇异值分解辅助特征向量分解计算主成分分析及其在图像去噪中的应用","authors":"Mosaddik Hasan, Biswajit Bala, A. Yoshitaka","doi":"10.1109/ICIEV.2015.7334007","DOIUrl":null,"url":null,"abstract":"Principal Component analysis (PCA) is a powerful nonparametric tool in modern data analysis which is widely used in diverse fields from neuroscience to image processing. PCA can be calculated in two different ways: decomposition of eigenvectors and singular value decomposition (SVD). In this paper, we proposed a new method of PCA calculation using both SVD and decomposition of eigenvectors. We presented how the proposed method of calculation of PCA improve the performance of PCA in image denoising. We also showed that the proposed method produced better results than the state-of-the-art image denoising algorithms in terms of PSNR, SSIM and visual quality.","PeriodicalId":367355,"journal":{"name":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","volume":"276 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SVD aided eigenvector decomposition to compute PCA and it's application in image denoising\",\"authors\":\"Mosaddik Hasan, Biswajit Bala, A. Yoshitaka\",\"doi\":\"10.1109/ICIEV.2015.7334007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principal Component analysis (PCA) is a powerful nonparametric tool in modern data analysis which is widely used in diverse fields from neuroscience to image processing. PCA can be calculated in two different ways: decomposition of eigenvectors and singular value decomposition (SVD). In this paper, we proposed a new method of PCA calculation using both SVD and decomposition of eigenvectors. We presented how the proposed method of calculation of PCA improve the performance of PCA in image denoising. We also showed that the proposed method produced better results than the state-of-the-art image denoising algorithms in terms of PSNR, SSIM and visual quality.\",\"PeriodicalId\":367355,\"journal\":{\"name\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"volume\":\"276 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEV.2015.7334007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEV.2015.7334007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SVD aided eigenvector decomposition to compute PCA and it's application in image denoising
Principal Component analysis (PCA) is a powerful nonparametric tool in modern data analysis which is widely used in diverse fields from neuroscience to image processing. PCA can be calculated in two different ways: decomposition of eigenvectors and singular value decomposition (SVD). In this paper, we proposed a new method of PCA calculation using both SVD and decomposition of eigenvectors. We presented how the proposed method of calculation of PCA improve the performance of PCA in image denoising. We also showed that the proposed method produced better results than the state-of-the-art image denoising algorithms in terms of PSNR, SSIM and visual quality.