基于广义l统计的稳健估计:理论、应用和前景

R. Serfling
{"title":"基于广义l统计的稳健估计:理论、应用和前景","authors":"R. Serfling","doi":"10.1201/9780203493212.PT4","DOIUrl":null,"url":null,"abstract":"Generalized L-statistics, i ntroduced in Ser BLOCKINing (1984) and including classical U-statistics and L-statistics, are linear functions based on the ordered evaluations of a kernel over subsets of the sample observations. In particular, generalized median s t a tistics fall within this class and are found to fulll an interesting and potent principle, that \\smoothing\" followed by \\medianing\" yields a very favorable combination of eciency and robustness. Extensive asymptotic theory now available for generalized L-statistics is reviewed, including a s ymptotic normality, strong convergence, large deviation, sequential xed-width condence interval, j a c kknife, and bootstrap results, as well as Glivenko-Cantelli theory for associated empirical processes of U-statistic structure. Illustrative a pplications are treated, including nonparametric and robust location and spread estimation, nonparametric analysis of linear models, nonparametric regression, and robust parametric scale estimation for exponential distributions, equivalently tail index estimation for Pareto distributions.","PeriodicalId":113421,"journal":{"name":"Advances on Methodological and Applied Aspects of Probability and Statistics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Estimation via Generalized L-Statistics: Theory, Applications, and Perspectives\",\"authors\":\"R. Serfling\",\"doi\":\"10.1201/9780203493212.PT4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized L-statistics, i ntroduced in Ser BLOCKINing (1984) and including classical U-statistics and L-statistics, are linear functions based on the ordered evaluations of a kernel over subsets of the sample observations. In particular, generalized median s t a tistics fall within this class and are found to fulll an interesting and potent principle, that \\\\smoothing\\\" followed by \\\\medianing\\\" yields a very favorable combination of eciency and robustness. Extensive asymptotic theory now available for generalized L-statistics is reviewed, including a s ymptotic normality, strong convergence, large deviation, sequential xed-width condence interval, j a c kknife, and bootstrap results, as well as Glivenko-Cantelli theory for associated empirical processes of U-statistic structure. Illustrative a pplications are treated, including nonparametric and robust location and spread estimation, nonparametric analysis of linear models, nonparametric regression, and robust parametric scale estimation for exponential distributions, equivalently tail index estimation for Pareto distributions.\",\"PeriodicalId\":113421,\"journal\":{\"name\":\"Advances on Methodological and Applied Aspects of Probability and Statistics\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances on Methodological and Applied Aspects of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780203493212.PT4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances on Methodological and Applied Aspects of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780203493212.PT4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

广义l -统计量,在Ser BLOCKINing(1984)中引入,包括经典的u -统计量和l -统计量,是基于样本观测子集上核的有序评估的线性函数。特别地,广义中位数统计属于这一类,并且被发现实现了一个有趣而有力的原则,即平滑“之后是中位数”,产生了效率和鲁棒性的非常有利的组合。本文综述了目前广义l统计的广泛渐近理论,包括s渐近正态性、强收敛性、大偏差、序列x宽置信区间、j a c刀和自举结果,以及u统计结构相关经验过程的Glivenko-Cantelli理论。本文处理了说明性应用,包括非参数和鲁棒位置和扩展估计、线性模型的非参数分析、非参数回归和指数分布的鲁棒参数尺度估计,即帕累托分布的尾指数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Estimation via Generalized L-Statistics: Theory, Applications, and Perspectives
Generalized L-statistics, i ntroduced in Ser BLOCKINing (1984) and including classical U-statistics and L-statistics, are linear functions based on the ordered evaluations of a kernel over subsets of the sample observations. In particular, generalized median s t a tistics fall within this class and are found to fulll an interesting and potent principle, that \smoothing" followed by \medianing" yields a very favorable combination of eciency and robustness. Extensive asymptotic theory now available for generalized L-statistics is reviewed, including a s ymptotic normality, strong convergence, large deviation, sequential xed-width condence interval, j a c kknife, and bootstrap results, as well as Glivenko-Cantelli theory for associated empirical processes of U-statistic structure. Illustrative a pplications are treated, including nonparametric and robust location and spread estimation, nonparametric analysis of linear models, nonparametric regression, and robust parametric scale estimation for exponential distributions, equivalently tail index estimation for Pareto distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Time-To-Event Data Using Flowgraph Models Generalized Estimating Equations For Panel Data And Managerial Monitoring In Electric Utilities Performance of the PTE Based on the Conflicting W, Lr and Lm Tests In Regression Model Defect Rate Estimation Using Imperfect Zero-Defect Sampling With Rectification Information Matrix Tests for the Composed Error Frontier Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1