微型精神状态检查方法早期诊断阿尔茨海默病:MMSE

Dong Chen, A. Alsadoon, P. Prasad, A. Elchouemi
{"title":"微型精神状态检查方法早期诊断阿尔茨海默病:MMSE","authors":"Dong Chen, A. Alsadoon, P. Prasad, A. Elchouemi","doi":"10.1109/IACS.2017.7921958","DOIUrl":null,"url":null,"abstract":"This study aims to analyse the current method in diagnosing early Alzheimer disease and offer a new method to improve the performance of bioinformatics techniques. It proposes a hybrid MRI image processing method to improve the image quality for Alzheimer disease classification. This hybrid method has four stages consisting of image pre-processing, segmentation, feature extraction, and classification. Experimental results using a hybrid image pre-processing method apply on original MRI image data. The study shows that the Mini Mental State Examination (MMSE) method together with the residual intensity non-uniformity method in the SPM machine could make MRI image more effective with high accuracy and sensitive rates. The study shows that a well-designed pre-processing stage could improve the image quality of the subject for final classification. It can help researchers to gain high value of diagnosing early Alzheimer disease by filtering most of the image noise.","PeriodicalId":180504,"journal":{"name":"2017 8th International Conference on Information and Communication Systems (ICICS)","volume":"276 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Early diagnosis of Alzheimer using mini mental state examination method: MMSE\",\"authors\":\"Dong Chen, A. Alsadoon, P. Prasad, A. Elchouemi\",\"doi\":\"10.1109/IACS.2017.7921958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to analyse the current method in diagnosing early Alzheimer disease and offer a new method to improve the performance of bioinformatics techniques. It proposes a hybrid MRI image processing method to improve the image quality for Alzheimer disease classification. This hybrid method has four stages consisting of image pre-processing, segmentation, feature extraction, and classification. Experimental results using a hybrid image pre-processing method apply on original MRI image data. The study shows that the Mini Mental State Examination (MMSE) method together with the residual intensity non-uniformity method in the SPM machine could make MRI image more effective with high accuracy and sensitive rates. The study shows that a well-designed pre-processing stage could improve the image quality of the subject for final classification. It can help researchers to gain high value of diagnosing early Alzheimer disease by filtering most of the image noise.\",\"PeriodicalId\":180504,\"journal\":{\"name\":\"2017 8th International Conference on Information and Communication Systems (ICICS)\",\"volume\":\"276 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 8th International Conference on Information and Communication Systems (ICICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IACS.2017.7921958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACS.2017.7921958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究旨在分析目前早期阿尔茨海默病的诊断方法,为提高生物信息学技术的性能提供一种新的方法。为了提高阿尔茨海默病分类的图像质量,提出了一种混合MRI图像处理方法。该混合方法分为图像预处理、分割、特征提取和分类四个阶段。实验结果表明,混合图像预处理方法适用于原始MRI图像数据。研究表明,迷你精神状态检查(MMSE)方法与SPM机的残余强度非均匀性方法相结合,可以使MRI成像更加有效,具有较高的准确率和灵敏度。研究表明,设计良好的预处理阶段可以提高被试的图像质量,便于最终分类。通过过滤掉大部分图像噪声,可以帮助研究人员获得较高的早期阿尔茨海默病诊断价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Early diagnosis of Alzheimer using mini mental state examination method: MMSE
This study aims to analyse the current method in diagnosing early Alzheimer disease and offer a new method to improve the performance of bioinformatics techniques. It proposes a hybrid MRI image processing method to improve the image quality for Alzheimer disease classification. This hybrid method has four stages consisting of image pre-processing, segmentation, feature extraction, and classification. Experimental results using a hybrid image pre-processing method apply on original MRI image data. The study shows that the Mini Mental State Examination (MMSE) method together with the residual intensity non-uniformity method in the SPM machine could make MRI image more effective with high accuracy and sensitive rates. The study shows that a well-designed pre-processing stage could improve the image quality of the subject for final classification. It can help researchers to gain high value of diagnosing early Alzheimer disease by filtering most of the image noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using behaviour-driven development with hardware-software co-design for autonomous load management Efficient 3D placement of a UAV using particle swarm optimization A brain friendly tool to facilitate research-teaching nexus: Mind maps HidroMORE 2: An optimized and parallel version of HidroMORE Comparative analysis of MCDM methods for product aspect ranking: TOPSIS and VIKOR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1