稀疏感知数据选择LMS算法

Ying-Ren Chien, Han-En Hsieh
{"title":"稀疏感知数据选择LMS算法","authors":"Ying-Ren Chien, Han-En Hsieh","doi":"10.1109/ICCE-Taiwan58799.2023.10226731","DOIUrl":null,"url":null,"abstract":"Data-selective adaptive algorithms are well-suited for reducing the complexity of weight updating in system identification problems. Nevertheless, impulse noise can obstruct the effectiveness of their data selection schemes. To address this issue, we introduce a sparsity-aware data-selective least mean square (DS-LMS) algorithm that enhances the data selection scheme for sparse system identification in the presence of impulse noise. Our approach was tested through numerical experiments, which confirmed its efficacy.","PeriodicalId":112903,"journal":{"name":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparseness-Aware Data-Selective LMS Algorithm\",\"authors\":\"Ying-Ren Chien, Han-En Hsieh\",\"doi\":\"10.1109/ICCE-Taiwan58799.2023.10226731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-selective adaptive algorithms are well-suited for reducing the complexity of weight updating in system identification problems. Nevertheless, impulse noise can obstruct the effectiveness of their data selection schemes. To address this issue, we introduce a sparsity-aware data-selective least mean square (DS-LMS) algorithm that enhances the data selection scheme for sparse system identification in the presence of impulse noise. Our approach was tested through numerical experiments, which confirmed its efficacy.\",\"PeriodicalId\":112903,\"journal\":{\"name\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据选择自适应算法非常适合于降低系统识别问题中权重更新的复杂性。然而,脉冲噪声会阻碍其数据选择方案的有效性。为了解决这个问题,我们引入了一种稀疏感知数据选择最小均方(DS-LMS)算法,该算法增强了存在脉冲噪声的稀疏系统识别的数据选择方案。通过数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparseness-Aware Data-Selective LMS Algorithm
Data-selective adaptive algorithms are well-suited for reducing the complexity of weight updating in system identification problems. Nevertheless, impulse noise can obstruct the effectiveness of their data selection schemes. To address this issue, we introduce a sparsity-aware data-selective least mean square (DS-LMS) algorithm that enhances the data selection scheme for sparse system identification in the presence of impulse noise. Our approach was tested through numerical experiments, which confirmed its efficacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a visual IoT environment analysis system to support self-directed learning of students Smallest Botnet Firewall Building Problem and a Girvan-Newman Algorithm-Based Heuristic Solution Parametric Optimization of WEDM Process for Machining ANSI Steel Using Soft-Computing Methods Development of a Transmissive LED Touch Display for Engineered Marble Sewage Treatment Interactive Learning Game Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1