多维时间序列的可视化可解释LSTM

Tommy Dang, Huyen N. Nguyen, Ngan V. T. Nguyen
{"title":"多维时间序列的可视化可解释LSTM","authors":"Tommy Dang, Huyen N. Nguyen, Ngan V. T. Nguyen","doi":"10.1145/3468784.3471603","DOIUrl":null,"url":null,"abstract":"Neural networks are known for their predictive capability, leading to vast applications in various domains. However, the explainability of a neural network model remains enigmatic, especially when the model comes short in learning a particular pattern or features. This work introduces a visual explainable LSTM network framework focusing on temporal prediction. The hindrance to the training process is highlighted by the irregular instances throughout the entire architecture, from input to intermediate layers and output. The framework provides interactive features to support users in customizing and rearranging the structure to obtain different network representations and perform what-if analysis. To evaluate the usefulness of our approach, we demonstrate the application of VixLSTM on the various datasets generated from different domains.","PeriodicalId":341589,"journal":{"name":"The 12th International Conference on Advances in Information Technology","volume":"05 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"VixLSTM: Visual Explainable LSTM for Multivariate Time Series\",\"authors\":\"Tommy Dang, Huyen N. Nguyen, Ngan V. T. Nguyen\",\"doi\":\"10.1145/3468784.3471603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks are known for their predictive capability, leading to vast applications in various domains. However, the explainability of a neural network model remains enigmatic, especially when the model comes short in learning a particular pattern or features. This work introduces a visual explainable LSTM network framework focusing on temporal prediction. The hindrance to the training process is highlighted by the irregular instances throughout the entire architecture, from input to intermediate layers and output. The framework provides interactive features to support users in customizing and rearranging the structure to obtain different network representations and perform what-if analysis. To evaluate the usefulness of our approach, we demonstrate the application of VixLSTM on the various datasets generated from different domains.\",\"PeriodicalId\":341589,\"journal\":{\"name\":\"The 12th International Conference on Advances in Information Technology\",\"volume\":\"05 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 12th International Conference on Advances in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3468784.3471603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th International Conference on Advances in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468784.3471603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

神经网络以其预测能力而闻名,在各个领域都有广泛的应用。然而,神经网络模型的可解释性仍然是谜,特别是当模型在学习特定模式或特征方面不足时。这项工作介绍了一个可视化的可解释的LSTM网络框架,重点是时间预测。从输入到中间层和输出,整个体系结构中的不规则实例突出了训练过程的障碍。该框架提供了交互功能,支持用户自定义和重新排列结构,以获得不同的网络表示并执行假设分析。为了评估我们的方法的有用性,我们演示了VixLSTM在不同领域生成的各种数据集上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VixLSTM: Visual Explainable LSTM for Multivariate Time Series
Neural networks are known for their predictive capability, leading to vast applications in various domains. However, the explainability of a neural network model remains enigmatic, especially when the model comes short in learning a particular pattern or features. This work introduces a visual explainable LSTM network framework focusing on temporal prediction. The hindrance to the training process is highlighted by the irregular instances throughout the entire architecture, from input to intermediate layers and output. The framework provides interactive features to support users in customizing and rearranging the structure to obtain different network representations and perform what-if analysis. To evaluate the usefulness of our approach, we demonstrate the application of VixLSTM on the various datasets generated from different domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Privacy Preservation Techniques for Sequential Data Releasing OutViz: Visualizing the Outliers of Multivariate Time Series An Application of Evaluation of Human Sketches using Deep Learning Technique Investigation of SIFT and ORB descriptors for Indoor Maps Fusion for the Multi-agent mobile robots Computing Resource Estimation by using Machine Learning Techniques for ALICE O2 Logging System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1