{"title":"遗传风险自动计算","authors":"D. Pathak, M. Perlin","doi":"10.1109/CAIA.1994.323678","DOIUrl":null,"url":null,"abstract":"Describes a system to automatically compute genetic risks. To compute genetic risk, genetic counselors consider a variety of data, including family history, disease characteristics and DNA information, within a Bayesian inference framework. However, to manually process all the information is an error-prone and tedious task. Our system provides an automation of this task. It accepts as input the case data and the specification of the risk assessment task. The output of the system is the risk value of interest. The design of the system is based on a blackboard architecture. We describe the knowledge sources making up the system and an illustrative example of the use of the system do compute genetic risks.<<ETX>>","PeriodicalId":297396,"journal":{"name":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic computation of genetic risk\",\"authors\":\"D. Pathak, M. Perlin\",\"doi\":\"10.1109/CAIA.1994.323678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes a system to automatically compute genetic risks. To compute genetic risk, genetic counselors consider a variety of data, including family history, disease characteristics and DNA information, within a Bayesian inference framework. However, to manually process all the information is an error-prone and tedious task. Our system provides an automation of this task. It accepts as input the case data and the specification of the risk assessment task. The output of the system is the risk value of interest. The design of the system is based on a blackboard architecture. We describe the knowledge sources making up the system and an illustrative example of the use of the system do compute genetic risks.<<ETX>>\",\"PeriodicalId\":297396,\"journal\":{\"name\":\"Proceedings of the Tenth Conference on Artificial Intelligence for Applications\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth Conference on Artificial Intelligence for Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIA.1994.323678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIA.1994.323678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

描述一个自动计算遗传风险的系统。为了计算遗传风险,遗传咨询师在贝叶斯推理框架内考虑各种数据,包括家族史、疾病特征和DNA信息。然而,手动处理所有信息是一项容易出错且乏味的任务。我们的系统提供了这项任务的自动化。它接受案例数据和风险评估任务的说明作为输入。系统的输出是利息的风险值。系统的设计基于黑板架构。我们描述了构成该系统的知识来源,并举例说明了如何使用该系统来计算遗传风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic computation of genetic risk
Describes a system to automatically compute genetic risks. To compute genetic risk, genetic counselors consider a variety of data, including family history, disease characteristics and DNA information, within a Bayesian inference framework. However, to manually process all the information is an error-prone and tedious task. Our system provides an automation of this task. It accepts as input the case data and the specification of the risk assessment task. The output of the system is the risk value of interest. The design of the system is based on a blackboard architecture. We describe the knowledge sources making up the system and an illustrative example of the use of the system do compute genetic risks.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OaSiS: integrating safety reasoning for decision support in oncology Memory-based parsing with parallel marker-passing A study of an expert system for interpreting human walking disorders Integrating case-based reasoning, knowledge-based approach and Dijkstra algorithm for route finding Learning control knowledge through cases in schedule optimization problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1