{"title":"利用对隐马尔可夫模型诱导声音片段差异","authors":"Martijn Wieling, Therese Leinonen, J. Nerbonne","doi":"10.3115/1626516.1626523","DOIUrl":null,"url":null,"abstract":"Pair Hidden Markov Models (PairHMMs) are trained to align the pronunciation transcriptions of a large contemporary collection of Dutch dialect material, the Goeman-Taeldeman-Van Reenen-Project (GTRP, collected 1980--1995). We focus on the question of how to incorporate information about sound segment distances to improve sequence distance measures for use in dialect comparison. PairHMMs induce segment distances via expectation maximisation (EM). Our analysis uses a phonologically comparable subset of 562 items for all 424 localities in the Netherlands. We evaluate the work first via comparison to analyses obtained using the Levenshtein distance on the same dataset and second, by comparing the quality of the induced vowel distances to acoustic differences.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Inducing Sound Segment Differences Using Pair Hidden Markov Models\",\"authors\":\"Martijn Wieling, Therese Leinonen, J. Nerbonne\",\"doi\":\"10.3115/1626516.1626523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pair Hidden Markov Models (PairHMMs) are trained to align the pronunciation transcriptions of a large contemporary collection of Dutch dialect material, the Goeman-Taeldeman-Van Reenen-Project (GTRP, collected 1980--1995). We focus on the question of how to incorporate information about sound segment distances to improve sequence distance measures for use in dialect comparison. PairHMMs induce segment distances via expectation maximisation (EM). Our analysis uses a phonologically comparable subset of 562 items for all 424 localities in the Netherlands. We evaluate the work first via comparison to analyses obtained using the Levenshtein distance on the same dataset and second, by comparing the quality of the induced vowel distances to acoustic differences.\",\"PeriodicalId\":186158,\"journal\":{\"name\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1626516.1626523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1626516.1626523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
摘要
对隐马尔可夫模型(pairhmm)进行训练,以对齐大量当代荷兰方言材料的发音转录,goeman - taeldemand - van Reenen-Project (GTRP,收集1980- 1995)。我们关注的问题是如何结合音段距离的信息来改进方言比较中使用的序列距离测量。pairhmm通过期望最大化(EM)来诱导区段距离。我们的分析使用了荷兰所有424个地区的562个项目的语音可比子集。我们首先通过与同一数据集上使用Levenshtein距离获得的分析结果进行比较,然后通过比较诱导元音距离与声学差异的质量来评估工作。
Inducing Sound Segment Differences Using Pair Hidden Markov Models
Pair Hidden Markov Models (PairHMMs) are trained to align the pronunciation transcriptions of a large contemporary collection of Dutch dialect material, the Goeman-Taeldeman-Van Reenen-Project (GTRP, collected 1980--1995). We focus on the question of how to incorporate information about sound segment distances to improve sequence distance measures for use in dialect comparison. PairHMMs induce segment distances via expectation maximisation (EM). Our analysis uses a phonologically comparable subset of 562 items for all 424 localities in the Netherlands. We evaluate the work first via comparison to analyses obtained using the Levenshtein distance on the same dataset and second, by comparing the quality of the induced vowel distances to acoustic differences.