焦点:功能从控制器卸载,以利用开关电源

Ji Yang, Xiaowei Yang, Zhenyu Zhou, Xin Wu, Theophilus A. Benson, Chengchen Hu
{"title":"焦点:功能从控制器卸载,以利用开关电源","authors":"Ji Yang, Xiaowei Yang, Zhenyu Zhou, Xin Wu, Theophilus A. Benson, Chengchen Hu","doi":"10.1109/NFV-SDN.2016.7919498","DOIUrl":null,"url":null,"abstract":"Software Defined Networking (SDN) uses a logically centralized controller to replace the distributed control plane in a traditional network. One of the central challenges faced by the SDN paradigm is the scalability of the logical controller. As a network grows in size, the computational and communication demand faced by a controller may soon exceed the capabilities of a commodity server. In this work, we revisit the task division of labour between the controller and switches, and propose FOCUS, an architecture that offloads a specific subset of control functions, i.e., stable local functions, to the switches' software stack. We implemented a prototype of FOCUS and analyzed the benefits of converting several SDN applications. Due to space restrictions, we only present results for ARP, LLDP and elephant flow detection. Our initial results are promising and they show that FOCUS can reduce a controller's communication overhead by 50% to nearly 100%, and the computational overhead from 80% to 98%. Furthermore, we observe that FOCUS offloading to the switches saves switch CPU because FOCUS reduces the overheads for communication with the controller.","PeriodicalId":448203,"journal":{"name":"2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"FOCUS: Function Offloading from a Controller to Utilize Switch power\",\"authors\":\"Ji Yang, Xiaowei Yang, Zhenyu Zhou, Xin Wu, Theophilus A. Benson, Chengchen Hu\",\"doi\":\"10.1109/NFV-SDN.2016.7919498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software Defined Networking (SDN) uses a logically centralized controller to replace the distributed control plane in a traditional network. One of the central challenges faced by the SDN paradigm is the scalability of the logical controller. As a network grows in size, the computational and communication demand faced by a controller may soon exceed the capabilities of a commodity server. In this work, we revisit the task division of labour between the controller and switches, and propose FOCUS, an architecture that offloads a specific subset of control functions, i.e., stable local functions, to the switches' software stack. We implemented a prototype of FOCUS and analyzed the benefits of converting several SDN applications. Due to space restrictions, we only present results for ARP, LLDP and elephant flow detection. Our initial results are promising and they show that FOCUS can reduce a controller's communication overhead by 50% to nearly 100%, and the computational overhead from 80% to 98%. Furthermore, we observe that FOCUS offloading to the switches saves switch CPU because FOCUS reduces the overheads for communication with the controller.\",\"PeriodicalId\":448203,\"journal\":{\"name\":\"2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NFV-SDN.2016.7919498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NFV-SDN.2016.7919498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

SDN (Software Defined Networking)是一种通过逻辑上集中的控制器来代替传统网络中的分布式控制平面的网络。SDN范例面临的主要挑战之一是逻辑控制器的可伸缩性。随着网络规模的增长,控制器所面临的计算和通信需求可能很快就会超过商用服务器的能力。在这项工作中,我们重新审视了控制器和交换机之间的任务分工,并提出了FOCUS,这是一种将控制功能的特定子集(即稳定的本地功能)卸载到交换机软件堆栈的架构。我们实现了FOCUS的原型,并分析了转换多个SDN应用程序的好处。由于篇幅限制,我们只给出了ARP、LLDP和象流检测的结果。我们的初步结果是有希望的,他们表明FOCUS可以将控制器的通信开销减少50%到近100%,计算开销从80%到98%。此外,我们观察到FOCUS卸载到交换机可以节省交换机CPU,因为FOCUS减少了与控制器通信的开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FOCUS: Function Offloading from a Controller to Utilize Switch power
Software Defined Networking (SDN) uses a logically centralized controller to replace the distributed control plane in a traditional network. One of the central challenges faced by the SDN paradigm is the scalability of the logical controller. As a network grows in size, the computational and communication demand faced by a controller may soon exceed the capabilities of a commodity server. In this work, we revisit the task division of labour between the controller and switches, and propose FOCUS, an architecture that offloads a specific subset of control functions, i.e., stable local functions, to the switches' software stack. We implemented a prototype of FOCUS and analyzed the benefits of converting several SDN applications. Due to space restrictions, we only present results for ARP, LLDP and elephant flow detection. Our initial results are promising and they show that FOCUS can reduce a controller's communication overhead by 50% to nearly 100%, and the computational overhead from 80% to 98%. Furthermore, we observe that FOCUS offloading to the switches saves switch CPU because FOCUS reduces the overheads for communication with the controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EPLE: An Efficient Passive Lightweight Estimator for SDN packet loss measurement SFC-Checker: Checking the correct forwarding behavior of Service Function chaining An extensible Autoscaling Engine (AE) for Software-based Network Functions Efficient service auto-discovery for next generation network slicing architecture Performance evaluation and tuning of Virtual Infrastructure Managers for (Micro) Virtual Network Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1