基于三维CBAMe的低频波动特征映射ADHD分类

Lihua Su, Sei-ichiro Kamata
{"title":"基于三维CBAMe的低频波动特征映射ADHD分类","authors":"Lihua Su, Sei-ichiro Kamata","doi":"10.1145/3563737.3563749","DOIUrl":null,"url":null,"abstract":"Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in teenagers. Some excellent ADHD automatic diagnosis system extracted features from magnetic resonance image (MRI). Researchers have shown fMRI data offers specific measure of ADHD brain activity. In this paper, we propose a low-frequency fluctuation feature map generation approach for ADHD diagnosis, which can highlight the discriminative parts of fMRI features. However, the extracted feature maps still have redundant information. So we add the attention mechanism which can pay more attention to the local information. In order to successfully apply the attention mechanism to convolutional neural network (CNN) and match it to 3D fMRI feature maps, we extend convolutional block attention module (CBAM) from 2D plane to 3D geometric space. After that, we design a single modality 3D CNN based on 3D CBAM to diagnosis ADHD via low-frequency fluctuation feature map. Our model is evaluated on ADHD-200 dataset and it obtains the state-of-the-art classification accuracy of 75.83%. At the same time, our model also simplifies the feature extraction module and the classification module of multi-modality method.","PeriodicalId":127021,"journal":{"name":"Proceedings of the 7th International Conference on Biomedical Signal and Image Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ADHD Classification With Low-Frequency Fluctuation Feature Map Based on 3D CBAMe\",\"authors\":\"Lihua Su, Sei-ichiro Kamata\",\"doi\":\"10.1145/3563737.3563749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in teenagers. Some excellent ADHD automatic diagnosis system extracted features from magnetic resonance image (MRI). Researchers have shown fMRI data offers specific measure of ADHD brain activity. In this paper, we propose a low-frequency fluctuation feature map generation approach for ADHD diagnosis, which can highlight the discriminative parts of fMRI features. However, the extracted feature maps still have redundant information. So we add the attention mechanism which can pay more attention to the local information. In order to successfully apply the attention mechanism to convolutional neural network (CNN) and match it to 3D fMRI feature maps, we extend convolutional block attention module (CBAM) from 2D plane to 3D geometric space. After that, we design a single modality 3D CNN based on 3D CBAM to diagnosis ADHD via low-frequency fluctuation feature map. Our model is evaluated on ADHD-200 dataset and it obtains the state-of-the-art classification accuracy of 75.83%. At the same time, our model also simplifies the feature extraction module and the classification module of multi-modality method.\",\"PeriodicalId\":127021,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Biomedical Signal and Image Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Biomedical Signal and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3563737.3563749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Biomedical Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3563737.3563749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

注意缺陷多动障碍(ADHD)是一种常见的青少年神经发育障碍。一些优秀的ADHD自动诊断系统从磁共振图像中提取特征。研究人员已经表明,功能磁共振成像数据提供了多动症大脑活动的具体测量方法。本文提出了一种用于ADHD诊断的低频波动特征图生成方法,该方法可以突出fMRI特征的判别部分。然而,提取的特征映射仍然存在冗余信息。因此,我们增加了关注机制,使其更加关注局部信息。为了成功地将注意机制应用于卷积神经网络(CNN),并将其与三维fMRI特征图匹配,我们将卷积块注意模块(CBAM)从二维平面扩展到三维几何空间。在此基础上,设计了基于三维CBAM的单模态三维CNN,通过低频波动特征图对ADHD进行诊断。我们的模型在ADHD-200数据集上进行了评估,获得了75.83%的最新分类准确率。同时,我们的模型还简化了多模态方法的特征提取模块和分类模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADHD Classification With Low-Frequency Fluctuation Feature Map Based on 3D CBAMe
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in teenagers. Some excellent ADHD automatic diagnosis system extracted features from magnetic resonance image (MRI). Researchers have shown fMRI data offers specific measure of ADHD brain activity. In this paper, we propose a low-frequency fluctuation feature map generation approach for ADHD diagnosis, which can highlight the discriminative parts of fMRI features. However, the extracted feature maps still have redundant information. So we add the attention mechanism which can pay more attention to the local information. In order to successfully apply the attention mechanism to convolutional neural network (CNN) and match it to 3D fMRI feature maps, we extend convolutional block attention module (CBAM) from 2D plane to 3D geometric space. After that, we design a single modality 3D CNN based on 3D CBAM to diagnosis ADHD via low-frequency fluctuation feature map. Our model is evaluated on ADHD-200 dataset and it obtains the state-of-the-art classification accuracy of 75.83%. At the same time, our model also simplifies the feature extraction module and the classification module of multi-modality method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Primary Motor Cortex Represents Unilateral and Bilateral Movements of Elbows and Wrists – a Pilot Study STAT1 Regulates the Expression of MHC-I Class Molecules in Ovarian Cancer Determination of Resolution Limitation of Sonography used in Diagnosis of Cleft Lips and Palates ADHD Classification With Low-Frequency Fluctuation Feature Map Based on 3D CBAMe Semi-supervised learning with double head approach for carotid artery detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1