NARX在天线阵列自适应波束形成中的新应用

Ioannis Mallioras, Z. Zaharis, P. Lazaridis, N. Kantartzis, T. Yioultsis, Bo Liu, Stavros Kalafatis
{"title":"NARX在天线阵列自适应波束形成中的新应用","authors":"Ioannis Mallioras, Z. Zaharis, P. Lazaridis, N. Kantartzis, T. Yioultsis, Bo Liu, Stavros Kalafatis","doi":"10.23919/AT-AP-RASC54737.2022.9814406","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the use of a nonlinear autoregressive network with exogenous inputs (NARX) for adaptive beamforming on smart antennas. As a beamformer, NARX receives the angles of arrival of incoming signals to extract the complex feeding weights that produce the appropriate antenna radiation pattern. In order to demonstrate the potential of such an implementation, we test our model on a realistic linear antenna array composed of 16 microstrip elements. We use the null steering beamforming technique to produce the datasets needed for training and testing of our model and then we evaluate the accuracy of the radiation patterns produced by this model. To further demonstrate the efficiency of the NARX implementation, we also make a comparison with a feed-forward neural network that has the same architecture with that of NARX.","PeriodicalId":356067,"journal":{"name":"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)","volume":"23 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Utilization of NARX for Antenna Array Adaptive Beamforming\",\"authors\":\"Ioannis Mallioras, Z. Zaharis, P. Lazaridis, N. Kantartzis, T. Yioultsis, Bo Liu, Stavros Kalafatis\",\"doi\":\"10.23919/AT-AP-RASC54737.2022.9814406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the use of a nonlinear autoregressive network with exogenous inputs (NARX) for adaptive beamforming on smart antennas. As a beamformer, NARX receives the angles of arrival of incoming signals to extract the complex feeding weights that produce the appropriate antenna radiation pattern. In order to demonstrate the potential of such an implementation, we test our model on a realistic linear antenna array composed of 16 microstrip elements. We use the null steering beamforming technique to produce the datasets needed for training and testing of our model and then we evaluate the accuracy of the radiation patterns produced by this model. To further demonstrate the efficiency of the NARX implementation, we also make a comparison with a feed-forward neural network that has the same architecture with that of NARX.\",\"PeriodicalId\":356067,\"journal\":{\"name\":\"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)\",\"volume\":\"23 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AT-AP-RASC54737.2022.9814406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AT-AP-RASC54737.2022.9814406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了在智能天线上使用带有外生输入的非线性自回归网络(NARX)进行自适应波束形成。作为波束形成器,NARX接收进入信号的到达角度,提取产生适当天线辐射方向图的复杂馈电权重。为了证明这种实现的潜力,我们在一个由16个微带元件组成的现实线性天线阵列上测试了我们的模型。我们使用零导向波束形成技术来产生训练和测试模型所需的数据集,然后我们评估该模型产生的辐射模式的准确性。为了进一步证明NARX实现的效率,我们还与与NARX具有相同架构的前馈神经网络进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Utilization of NARX for Antenna Array Adaptive Beamforming
In this paper, we investigate the use of a nonlinear autoregressive network with exogenous inputs (NARX) for adaptive beamforming on smart antennas. As a beamformer, NARX receives the angles of arrival of incoming signals to extract the complex feeding weights that produce the appropriate antenna radiation pattern. In order to demonstrate the potential of such an implementation, we test our model on a realistic linear antenna array composed of 16 microstrip elements. We use the null steering beamforming technique to produce the datasets needed for training and testing of our model and then we evaluate the accuracy of the radiation patterns produced by this model. To further demonstrate the efficiency of the NARX implementation, we also make a comparison with a feed-forward neural network that has the same architecture with that of NARX.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Packaging of a Beamforming IC by Laser Enhanced Direct Print Additive Manufacturing (LE-DPAM) Multifunctional and Deployable Origami Antennas 3D Miniaturization Method and its Application to a Wearable Vivaldi Antenna Design of an impedance matched near field passive antenna for medical microwave radiometry Design of a mobile RFI monitoring station for DSA-2000 candidate sites surveys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1