R. Javed, T. Saba, Salman Humdullah, Nor Shahida MOHD JAMAIL, Mazhar Javed Awan
{"title":"基于模式识别的药物-药物相互作用诊断方法","authors":"R. Javed, T. Saba, Salman Humdullah, Nor Shahida MOHD JAMAIL, Mazhar Javed Awan","doi":"10.1109/CAIDA51941.2021.9425062","DOIUrl":null,"url":null,"abstract":"The diagnosis of interactions between two drugs is an essential procedure in drug development. Many medical tool’s offer inclusive records related to DDI. However, this tool’s results are not very satisfactory. The main aim is to propose an efficient approach based on pattern matching that identifies the interaction between two drugs. In this study, the goal is to collect the data from the DrugBank, which is a publicly available source. The drug-related data includes drug ID, drug names, and various kinds of sentences of drug-drug interaction. Drug names will be identified by drug names dictionary defined in the corpus, and sentences will be determined according to given patterns. These sentences will treat as input data, and preprocessing steps will perform in these sentences. Various types of features are selected for machine learning classification. Then all the attributes will be classified into desired classes. The proposed method gains 95.4% accuracy from the random forest classifier.","PeriodicalId":272573,"journal":{"name":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"An Efficient Pattern Recognition Based Method for Drug-Drug Interaction Diagnosis\",\"authors\":\"R. Javed, T. Saba, Salman Humdullah, Nor Shahida MOHD JAMAIL, Mazhar Javed Awan\",\"doi\":\"10.1109/CAIDA51941.2021.9425062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diagnosis of interactions between two drugs is an essential procedure in drug development. Many medical tool’s offer inclusive records related to DDI. However, this tool’s results are not very satisfactory. The main aim is to propose an efficient approach based on pattern matching that identifies the interaction between two drugs. In this study, the goal is to collect the data from the DrugBank, which is a publicly available source. The drug-related data includes drug ID, drug names, and various kinds of sentences of drug-drug interaction. Drug names will be identified by drug names dictionary defined in the corpus, and sentences will be determined according to given patterns. These sentences will treat as input data, and preprocessing steps will perform in these sentences. Various types of features are selected for machine learning classification. Then all the attributes will be classified into desired classes. The proposed method gains 95.4% accuracy from the random forest classifier.\",\"PeriodicalId\":272573,\"journal\":{\"name\":\"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIDA51941.2021.9425062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIDA51941.2021.9425062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Pattern Recognition Based Method for Drug-Drug Interaction Diagnosis
The diagnosis of interactions between two drugs is an essential procedure in drug development. Many medical tool’s offer inclusive records related to DDI. However, this tool’s results are not very satisfactory. The main aim is to propose an efficient approach based on pattern matching that identifies the interaction between two drugs. In this study, the goal is to collect the data from the DrugBank, which is a publicly available source. The drug-related data includes drug ID, drug names, and various kinds of sentences of drug-drug interaction. Drug names will be identified by drug names dictionary defined in the corpus, and sentences will be determined according to given patterns. These sentences will treat as input data, and preprocessing steps will perform in these sentences. Various types of features are selected for machine learning classification. Then all the attributes will be classified into desired classes. The proposed method gains 95.4% accuracy from the random forest classifier.