无约束环境下基于patch的LBPS面部表情识别

T. Saba, Muhammad Kashif, Erum Afzal
{"title":"无约束环境下基于patch的LBPS面部表情识别","authors":"T. Saba, Muhammad Kashif, Erum Afzal","doi":"10.1109/CAIDA51941.2021.9425309","DOIUrl":null,"url":null,"abstract":"Facial expression recognition in the wild is challenging due to various unconstrained conditions. Although existing facial expression classifiers have been almost perfect on analyzing constrained frontal faces, they fail to perform well on partially occluded faces common in the wild. In this paper, an improved facial expression recognition technique, patch-based multiple local binary pattern (LBP) descriptor, comprises three and four patch LBPs [TPLBP, FPLBP]. The two-dimensional discrete cosine transform (DCT) was applied over the entire coded TPLBP and FPLBP face image as a feature extractor. The experiment results show that the proposed technique achieves a better recognition rate than state-of-the-art techniques. Oulu-CASIA dataset facial expression images have been evaluated using a support vector machine (SVM) classifier resulted in an accuracy of 92.1%.","PeriodicalId":272573,"journal":{"name":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Facial Expression Recognition Using Patch-Based LBPS in an Unconstrained Environment\",\"authors\":\"T. Saba, Muhammad Kashif, Erum Afzal\",\"doi\":\"10.1109/CAIDA51941.2021.9425309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression recognition in the wild is challenging due to various unconstrained conditions. Although existing facial expression classifiers have been almost perfect on analyzing constrained frontal faces, they fail to perform well on partially occluded faces common in the wild. In this paper, an improved facial expression recognition technique, patch-based multiple local binary pattern (LBP) descriptor, comprises three and four patch LBPs [TPLBP, FPLBP]. The two-dimensional discrete cosine transform (DCT) was applied over the entire coded TPLBP and FPLBP face image as a feature extractor. The experiment results show that the proposed technique achieves a better recognition rate than state-of-the-art techniques. Oulu-CASIA dataset facial expression images have been evaluated using a support vector machine (SVM) classifier resulted in an accuracy of 92.1%.\",\"PeriodicalId\":272573,\"journal\":{\"name\":\"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIDA51941.2021.9425309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIDA51941.2021.9425309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于各种不受约束的条件,在野外进行面部表情识别具有挑战性。尽管现有的面部表情分类器在分析受约束的正面人脸方面几乎是完美的,但它们在分析自然环境中常见的部分遮挡人脸时却表现不佳。本文提出了一种改进的面部表情识别技术——基于patch的多局部二值模式描述符(multiple local binary pattern, LBP),包括3个和4个patch LBP [TPLBP, FPLBP]。将二维离散余弦变换(DCT)作为特征提取器应用于整个编码的TPLBP和FPLBP人脸图像。实验结果表明,该方法取得了较好的识别率。使用支持向量机(SVM)分类器对Oulu-CASIA数据集的面部表情图像进行了评估,准确率达到92.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facial Expression Recognition Using Patch-Based LBPS in an Unconstrained Environment
Facial expression recognition in the wild is challenging due to various unconstrained conditions. Although existing facial expression classifiers have been almost perfect on analyzing constrained frontal faces, they fail to perform well on partially occluded faces common in the wild. In this paper, an improved facial expression recognition technique, patch-based multiple local binary pattern (LBP) descriptor, comprises three and four patch LBPs [TPLBP, FPLBP]. The two-dimensional discrete cosine transform (DCT) was applied over the entire coded TPLBP and FPLBP face image as a feature extractor. The experiment results show that the proposed technique achieves a better recognition rate than state-of-the-art techniques. Oulu-CASIA dataset facial expression images have been evaluated using a support vector machine (SVM) classifier resulted in an accuracy of 92.1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melanoma Skin Lesions Classification using Deep Convolutional Neural Network with Transfer Learning A Comparison of Two-Stage Classifier Algorithm with Ensemble Techniques On Detection of Diabetic Retinopathy Predicting Congestive Heart Failure Risk Factors in King Abdulaziz Medical City A Machine Learning Approach Robotics: Biological Hypercomputation and Bio-Inspired Swarms Intelligence AI Support Marketing: Understanding the Customer Journey towards the Business Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1