{"title":"正则化估计方法的一些大样本结果","authors":"Michael Jansson, Demian Pouzo","doi":"10.2139/SSRN.3090731","DOIUrl":null,"url":null,"abstract":"We present a general framework for studying regularized estimators; i.e., estimation problems wherein \"plug-in\" type estimators are either ill-defined or ill-behaved. We derive primitive conditions that imply consistency and asymptotic linear representation for regularized estimators, allowing for slower than $\\sqrt{n}$ estimators as well as infinite dimensional parameters. We also provide data-driven methods for choosing tuning parameters that, under some conditions, achieve the aforementioned results. We illustrate the scope of our approach by studying a wide range of applications, revisiting known results and deriving new ones.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some Large Sample Results for the Method of Regularized Estimators\",\"authors\":\"Michael Jansson, Demian Pouzo\",\"doi\":\"10.2139/SSRN.3090731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a general framework for studying regularized estimators; i.e., estimation problems wherein \\\"plug-in\\\" type estimators are either ill-defined or ill-behaved. We derive primitive conditions that imply consistency and asymptotic linear representation for regularized estimators, allowing for slower than $\\\\sqrt{n}$ estimators as well as infinite dimensional parameters. We also provide data-driven methods for choosing tuning parameters that, under some conditions, achieve the aforementioned results. We illustrate the scope of our approach by studying a wide range of applications, revisiting known results and deriving new ones.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/SSRN.3090731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.3090731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Some Large Sample Results for the Method of Regularized Estimators
We present a general framework for studying regularized estimators; i.e., estimation problems wherein "plug-in" type estimators are either ill-defined or ill-behaved. We derive primitive conditions that imply consistency and asymptotic linear representation for regularized estimators, allowing for slower than $\sqrt{n}$ estimators as well as infinite dimensional parameters. We also provide data-driven methods for choosing tuning parameters that, under some conditions, achieve the aforementioned results. We illustrate the scope of our approach by studying a wide range of applications, revisiting known results and deriving new ones.