ApproxLUT:一种新颖的基于近似查找表的加速器

Ye Tian, Ting Wang, Qian Zhang, Q. Xu
{"title":"ApproxLUT:一种新颖的基于近似查找表的加速器","authors":"Ye Tian, Ting Wang, Qian Zhang, Q. Xu","doi":"10.1109/ICCAD.2017.8203810","DOIUrl":null,"url":null,"abstract":"Computing with memory, which stores function responses of some input patterns into lookup tables offline and retrieves their values when encountering similar patterns (instead of performing online calculation), is a promising energy-efficient computing technique. No doubt to say, with a given lookup table size, the efficiency of this technique depends on which function responses are stored and how they are organized. In this paper, we propose a novel adaptive approximate lookup table based accelerator, wherein we store function responses in a hierarchical manner with increasing fine-grained granularity and accuracy. In addition, the proposed accelerator provides lightweight compensation on output results at different precision levels according to input patterns and output quality requirements. Moreover, our accelerator conducts adaptive lookup table search by exploiting input locality. Experimental results on various computation kernels show significant energy savings of the proposed accelerator over prior solutions.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"ApproxLUT: A novel approximate lookup table-based accelerator\",\"authors\":\"Ye Tian, Ting Wang, Qian Zhang, Q. Xu\",\"doi\":\"10.1109/ICCAD.2017.8203810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing with memory, which stores function responses of some input patterns into lookup tables offline and retrieves their values when encountering similar patterns (instead of performing online calculation), is a promising energy-efficient computing technique. No doubt to say, with a given lookup table size, the efficiency of this technique depends on which function responses are stored and how they are organized. In this paper, we propose a novel adaptive approximate lookup table based accelerator, wherein we store function responses in a hierarchical manner with increasing fine-grained granularity and accuracy. In addition, the proposed accelerator provides lightweight compensation on output results at different precision levels according to input patterns and output quality requirements. Moreover, our accelerator conducts adaptive lookup table search by exploiting input locality. Experimental results on various computation kernels show significant energy savings of the proposed accelerator over prior solutions.\",\"PeriodicalId\":126686,\"journal\":{\"name\":\"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2017.8203810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

内存计算是一种很有前途的节能计算技术,它将一些输入模式的函数响应离线存储到查找表中,并在遇到类似模式时检索它们的值(而不是执行在线计算)。毫无疑问,对于给定的查找表大小,这种技术的效率取决于存储哪些函数响应以及它们是如何组织的。在本文中,我们提出了一种新的基于自适应近似查找表的加速器,其中我们以分层的方式存储函数响应,增加了细粒度的粒度和精度。此外,所提出的加速器根据输入模式和输出质量要求,对不同精度级别的输出结果提供轻量级补偿。此外,我们的加速器通过利用输入局部性进行自适应查找表搜索。在不同计算核上的实验结果表明,所提出的加速器比先前的解决方案节能显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ApproxLUT: A novel approximate lookup table-based accelerator
Computing with memory, which stores function responses of some input patterns into lookup tables offline and retrieves their values when encountering similar patterns (instead of performing online calculation), is a promising energy-efficient computing technique. No doubt to say, with a given lookup table size, the efficiency of this technique depends on which function responses are stored and how they are organized. In this paper, we propose a novel adaptive approximate lookup table based accelerator, wherein we store function responses in a hierarchical manner with increasing fine-grained granularity and accuracy. In addition, the proposed accelerator provides lightweight compensation on output results at different precision levels according to input patterns and output quality requirements. Moreover, our accelerator conducts adaptive lookup table search by exploiting input locality. Experimental results on various computation kernels show significant energy savings of the proposed accelerator over prior solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clepsydra: Modeling timing flows in hardware designs A case for low frequency single cycle multi hop NoCs for energy efficiency and high performance P4: Phase-based power/performance prediction of heterogeneous systems via neural networks Cyclist: Accelerating hardware development A coordinated synchronous and asynchronous parallel routing approach for FPGAs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1