这是过度杀戮吗?恶意软件检测器中的特征空间概念漂移分析

Zhi Chen, Zhenning Zhang, Zeliang Kan, Limin Yang, Jacopo Cortellazzi, Feargus Pendlebury, Fabio Pierazzi, L. Cavallaro, Gang Wang
{"title":"这是过度杀戮吗?恶意软件检测器中的特征空间概念漂移分析","authors":"Zhi Chen, Zhenning Zhang, Zeliang Kan, Limin Yang, Jacopo Cortellazzi, Feargus Pendlebury, Fabio Pierazzi, L. Cavallaro, Gang Wang","doi":"10.1109/SPW59333.2023.00007","DOIUrl":null,"url":null,"abstract":"Concept drift is a major challenge faced by machine learning-based malware detectors when deployed in practice. While existing works have investigated methods to detect concept drift, it is not yet well understood regarding the main causes behind the drift. In this paper, we design experiments to empirically analyze the impact of feature-space drift (new features introduced by new samples) and compare it with data-space drift (data distribution shift over existing features). Surprisingly, we find that data-space drift is the dominating contributor to the model degradation over time while feature-space drift has little to no impact. This is consistently observed over both Android and PE malware detectors, with different feature types and feature engineering methods, across different settings. We further validate this observation with recent online learning based malware detectors that incrementally update the feature space. Our result indicates the possibility of handling concept drift without frequent feature updating, and we further discuss the open questions for future research.","PeriodicalId":308378,"journal":{"name":"2023 IEEE Security and Privacy Workshops (SPW)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Is It Overkill? Analyzing Feature-Space Concept Drift in Malware Detectors\",\"authors\":\"Zhi Chen, Zhenning Zhang, Zeliang Kan, Limin Yang, Jacopo Cortellazzi, Feargus Pendlebury, Fabio Pierazzi, L. Cavallaro, Gang Wang\",\"doi\":\"10.1109/SPW59333.2023.00007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concept drift is a major challenge faced by machine learning-based malware detectors when deployed in practice. While existing works have investigated methods to detect concept drift, it is not yet well understood regarding the main causes behind the drift. In this paper, we design experiments to empirically analyze the impact of feature-space drift (new features introduced by new samples) and compare it with data-space drift (data distribution shift over existing features). Surprisingly, we find that data-space drift is the dominating contributor to the model degradation over time while feature-space drift has little to no impact. This is consistently observed over both Android and PE malware detectors, with different feature types and feature engineering methods, across different settings. We further validate this observation with recent online learning based malware detectors that incrementally update the feature space. Our result indicates the possibility of handling concept drift without frequent feature updating, and we further discuss the open questions for future research.\",\"PeriodicalId\":308378,\"journal\":{\"name\":\"2023 IEEE Security and Privacy Workshops (SPW)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Security and Privacy Workshops (SPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPW59333.2023.00007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Security and Privacy Workshops (SPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW59333.2023.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

概念漂移是基于机器学习的恶意软件检测器在实际部署时面临的主要挑战。虽然现有的工作已经研究了检测概念漂移的方法,但对于漂移背后的主要原因尚未得到很好的理解。在本文中,我们设计了实验来实证分析特征空间漂移(新样本引入的新特征)的影响,并将其与数据空间漂移(数据分布在现有特征上的移动)进行比较。令人惊讶的是,我们发现数据空间漂移是导致模型随时间退化的主要因素,而特征空间漂移几乎没有影响。在Android和PE恶意软件检测器中,使用不同的特征类型和特征工程方法,在不同的设置中都可以观察到这一点。我们用最近基于在线学习的恶意软件检测器进一步验证了这一观察结果,该检测器会逐步更新特征空间。我们的结果表明了在不频繁更新特征的情况下处理概念漂移的可能性,并进一步讨论了未来研究的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Is It Overkill? Analyzing Feature-Space Concept Drift in Malware Detectors
Concept drift is a major challenge faced by machine learning-based malware detectors when deployed in practice. While existing works have investigated methods to detect concept drift, it is not yet well understood regarding the main causes behind the drift. In this paper, we design experiments to empirically analyze the impact of feature-space drift (new features introduced by new samples) and compare it with data-space drift (data distribution shift over existing features). Surprisingly, we find that data-space drift is the dominating contributor to the model degradation over time while feature-space drift has little to no impact. This is consistently observed over both Android and PE malware detectors, with different feature types and feature engineering methods, across different settings. We further validate this observation with recent online learning based malware detectors that incrementally update the feature space. Our result indicates the possibility of handling concept drift without frequent feature updating, and we further discuss the open questions for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DISV: Domain Independent Semantic Validation of Data Files PolyDoc: Surveying PDF Files from the PolySwarm network Emoji shellcoding in RISC-V Divergent Representations: When Compiler Optimizations Enable Exploitation Cryo-Mechanical RAM Content Extraction Against Modern Embedded Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1