离散时间递归神经网络系统动力学分析对学习算法设计的启示

J. Cervantes, Maria Gomez, A. Schaum
{"title":"离散时间递归神经网络系统动力学分析对学习算法设计的启示","authors":"J. Cervantes, Maria Gomez, A. Schaum","doi":"10.1109/MICAI.2013.14","DOIUrl":null,"url":null,"abstract":"It is not clear so far what the implications of bifurcations in Discrete-Time Recurrent Neural Networks dynamics are with respect to learning algorithms. Previous studies discussed different phenomena in a general purpose framework, and here we are going to discuss in more detail. We perform an analysis of the dynamics of a neuron with feedback in order to find the different behaviors that it shows depending on the magnitude of the offset weight, the input weight and the feedback weight. We calculate the bifurcation manifolds that show the regions where the neuron behavior changes. We discuss the implications that these findings can have for the design of DTRNN learning algorithms.","PeriodicalId":340039,"journal":{"name":"2013 12th Mexican International Conference on Artificial Intelligence","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some Implications of System Dynamics Analysis of Discrete-Time Recurrent Neural Networks for Learning Algorithms Design\",\"authors\":\"J. Cervantes, Maria Gomez, A. Schaum\",\"doi\":\"10.1109/MICAI.2013.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is not clear so far what the implications of bifurcations in Discrete-Time Recurrent Neural Networks dynamics are with respect to learning algorithms. Previous studies discussed different phenomena in a general purpose framework, and here we are going to discuss in more detail. We perform an analysis of the dynamics of a neuron with feedback in order to find the different behaviors that it shows depending on the magnitude of the offset weight, the input weight and the feedback weight. We calculate the bifurcation manifolds that show the regions where the neuron behavior changes. We discuss the implications that these findings can have for the design of DTRNN learning algorithms.\",\"PeriodicalId\":340039,\"journal\":{\"name\":\"2013 12th Mexican International Conference on Artificial Intelligence\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 12th Mexican International Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI.2013.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2013.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

到目前为止,我们还不清楚离散时间递归神经网络动力学中的分岔对学习算法的影响。以前的研究在通用框架下讨论了不同的现象,这里我们将更详细地讨论。我们对带有反馈的神经元的动态进行了分析,以便找到它根据偏移权值、输入权值和反馈权值的大小所显示的不同行为。我们计算分叉流形,显示神经元行为改变的区域。我们讨论了这些发现对DTRNN学习算法设计的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Some Implications of System Dynamics Analysis of Discrete-Time Recurrent Neural Networks for Learning Algorithms Design
It is not clear so far what the implications of bifurcations in Discrete-Time Recurrent Neural Networks dynamics are with respect to learning algorithms. Previous studies discussed different phenomena in a general purpose framework, and here we are going to discuss in more detail. We perform an analysis of the dynamics of a neuron with feedback in order to find the different behaviors that it shows depending on the magnitude of the offset weight, the input weight and the feedback weight. We calculate the bifurcation manifolds that show the regions where the neuron behavior changes. We discuss the implications that these findings can have for the design of DTRNN learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coordination Model for Multi-robot Systems Based on Cooperative Behaviors JasMo - A Modularization Framework for Jason Examining Everyday Speech and Motor Symptoms of Parkinson's Disease for Diagnosis and Progression Tracking Quantifiers Types Resolution in NL Software Requirements An Uncertainty Quantification Method Based on Generalized Interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1