基于FPGA实现了一种用于ARMA模型参数辨识的遗传算法

H. Merabti, D. Massicotte
{"title":"基于FPGA实现了一种用于ARMA模型参数辨识的遗传算法","authors":"H. Merabti, D. Massicotte","doi":"10.1145/2591513.2591579","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an FPGA implementation of a genetic algorithm (GA) for linear and nonlinear auto regressive moving average (ARMA) model parameters identification. The GA features specifically designed genetic operators for adaptive filtering applications. The design was implemented using very low bit-wordlength fixed-point representation, where only 6-bit wordlength arithmetic was used. The implementation experiments show high parameters identification capabilities and low footprint.","PeriodicalId":272619,"journal":{"name":"ACM Great Lakes Symposium on VLSI","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPGA based implementation of a genetic algorithm for ARMA model parameters identification\",\"authors\":\"H. Merabti, D. Massicotte\",\"doi\":\"10.1145/2591513.2591579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an FPGA implementation of a genetic algorithm (GA) for linear and nonlinear auto regressive moving average (ARMA) model parameters identification. The GA features specifically designed genetic operators for adaptive filtering applications. The design was implemented using very low bit-wordlength fixed-point representation, where only 6-bit wordlength arithmetic was used. The implementation experiments show high parameters identification capabilities and low footprint.\",\"PeriodicalId\":272619,\"journal\":{\"name\":\"ACM Great Lakes Symposium on VLSI\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591513.2591579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591513.2591579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种用于线性和非线性自回归移动平均(ARMA)模型参数识别的遗传算法(GA)的FPGA实现。该遗传算法的特点是专门为自适应滤波应用设计了遗传算子。该设计使用非常低的位字长定点表示来实现,其中只使用了6位字长算法。实现实验表明,该方法具有较高的参数识别能力和较低的占用空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FPGA based implementation of a genetic algorithm for ARMA model parameters identification
In this paper, we propose an FPGA implementation of a genetic algorithm (GA) for linear and nonlinear auto regressive moving average (ARMA) model parameters identification. The GA features specifically designed genetic operators for adaptive filtering applications. The design was implemented using very low bit-wordlength fixed-point representation, where only 6-bit wordlength arithmetic was used. The implementation experiments show high parameters identification capabilities and low footprint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MB-FICA: multi-bit fault injection and coverage analysis A complete electronic network interface architecture for global contention-free communication over emerging optical networks-on-chip A design approach to automatically generate on-chip monitors during high-level synthesis of hardware accelerator Trade-off between energy and quality of service through dynamic operand truncation and fusion New 4T-based DRAM cell designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1