从维基百科文章和讨论建立语言语料库

Eliza Margaretha, H. Lüngen
{"title":"从维基百科文章和讨论建立语言语料库","authors":"Eliza Margaretha, H. Lüngen","doi":"10.21248/jlcl.29.2014.189","DOIUrl":null,"url":null,"abstract":"Wikipedia is a valuable resource, useful as a lingustic corpus or a dataset for many kinds of research. We built corpora from Wikipedia articles and talk pages in the I5 format, a TEI customisation used in the German Reference Corpus (Deutsches Referenzkorpus DeReKo). Our approach is a two-stage conversion combining parsing using the Sweble parser, and transformation using XSLT stylesheets. The conversion approach is able to successfully generate rich and valid corpora regardless of languages. We also introduce a method to segment user contributions in talk pages into postings.","PeriodicalId":402489,"journal":{"name":"J. Lang. Technol. Comput. Linguistics","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Building Linguistic Corpora from Wikipedia Articles and Discussions\",\"authors\":\"Eliza Margaretha, H. Lüngen\",\"doi\":\"10.21248/jlcl.29.2014.189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wikipedia is a valuable resource, useful as a lingustic corpus or a dataset for many kinds of research. We built corpora from Wikipedia articles and talk pages in the I5 format, a TEI customisation used in the German Reference Corpus (Deutsches Referenzkorpus DeReKo). Our approach is a two-stage conversion combining parsing using the Sweble parser, and transformation using XSLT stylesheets. The conversion approach is able to successfully generate rich and valid corpora regardless of languages. We also introduce a method to segment user contributions in talk pages into postings.\",\"PeriodicalId\":402489,\"journal\":{\"name\":\"J. Lang. Technol. Comput. Linguistics\",\"volume\":\"230 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Lang. Technol. Comput. Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21248/jlcl.29.2014.189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Lang. Technol. Comput. Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21248/jlcl.29.2014.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

维基百科是一个有价值的资源,作为语言语料库或许多研究的数据集都很有用。我们以I5格式从维基百科文章和讨论页构建语料库,这是德语参考语料库(Deutsches Referenzkorpus DeReKo)中使用的TEI定制。我们的方法是两阶段转换,结合使用Sweble解析器进行解析和使用XSLT样式表进行转换。这种转换方法能够成功地生成丰富有效的语料库。我们还介绍了一种将讨论页中的用户贡献分割为帖子的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building Linguistic Corpora from Wikipedia Articles and Discussions
Wikipedia is a valuable resource, useful as a lingustic corpus or a dataset for many kinds of research. We built corpora from Wikipedia articles and talk pages in the I5 format, a TEI customisation used in the German Reference Corpus (Deutsches Referenzkorpus DeReKo). Our approach is a two-stage conversion combining parsing using the Sweble parser, and transformation using XSLT stylesheets. The conversion approach is able to successfully generate rich and valid corpora regardless of languages. We also introduce a method to segment user contributions in talk pages into postings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aufbau eines Referenzkorpus zur deutschsprachigen internetbasierten Kommunikation als Zusatzkomponente für die Korpora im Projekt 'Digitales Wörterbuch der deutschen Sprache' (DWDS) Crowdsourcing the OCR Ground Truth of a German and French Cultural Heritage Corpus Comparison of OCR Accuracy on Early Printed Books using the Open Source Engines Calamari and OCRopus Ground Truth for training OCR engines on historical documents in German Fraktur and Early Modern Latin Supervised OCR Error Detection and Correction Using Statistical and Neural Machine Translation Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1