Bin He, Hao Meng, Zhejin Zhang, Rui Liu, Ting Zhang
{"title":"求解代数故事问题的基于质角色的数量关系提取","authors":"Bin He, Hao Meng, Zhejin Zhang, Rui Liu, Ting Zhang","doi":"10.32604/cmes.2023.023242","DOIUrl":null,"url":null,"abstract":"A qualia role-based entity-dependency graph (EDG) is proposed to represent and extract quantity relations for solving algebra story problems stated in Chinese. Traditional neural solvers use end-to-end models to translate problem texts into math expressions, which lack quantity relation acquisition in sophisticated scenarios. To address the problem, the proposed method leverages EDG to represent quantity relations hidden in qualia roles of math objects. Algorithms were designed for EDG generation and quantity relation extraction for solving algebra story problems. Experimental result shows that the proposed method achieved an average accuracy of 82.2% on quantity relation extraction compared to 74.5% of baseline method. Another prompt learning result shows a 5% increase obtained in problem solving by injecting the extracted quantity relations into the baseline neural solvers","PeriodicalId":398460,"journal":{"name":"Computer Modeling in Engineering & Sciences","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Qualia Role-Based Quantity Relation Extraction for Solving Algebra Story Problems\",\"authors\":\"Bin He, Hao Meng, Zhejin Zhang, Rui Liu, Ting Zhang\",\"doi\":\"10.32604/cmes.2023.023242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A qualia role-based entity-dependency graph (EDG) is proposed to represent and extract quantity relations for solving algebra story problems stated in Chinese. Traditional neural solvers use end-to-end models to translate problem texts into math expressions, which lack quantity relation acquisition in sophisticated scenarios. To address the problem, the proposed method leverages EDG to represent quantity relations hidden in qualia roles of math objects. Algorithms were designed for EDG generation and quantity relation extraction for solving algebra story problems. Experimental result shows that the proposed method achieved an average accuracy of 82.2% on quantity relation extraction compared to 74.5% of baseline method. Another prompt learning result shows a 5% increase obtained in problem solving by injecting the extracted quantity relations into the baseline neural solvers\",\"PeriodicalId\":398460,\"journal\":{\"name\":\"Computer Modeling in Engineering & Sciences\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Modeling in Engineering & Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32604/cmes.2023.023242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Modeling in Engineering & Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/cmes.2023.023242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Qualia Role-Based Quantity Relation Extraction for Solving Algebra Story Problems
A qualia role-based entity-dependency graph (EDG) is proposed to represent and extract quantity relations for solving algebra story problems stated in Chinese. Traditional neural solvers use end-to-end models to translate problem texts into math expressions, which lack quantity relation acquisition in sophisticated scenarios. To address the problem, the proposed method leverages EDG to represent quantity relations hidden in qualia roles of math objects. Algorithms were designed for EDG generation and quantity relation extraction for solving algebra story problems. Experimental result shows that the proposed method achieved an average accuracy of 82.2% on quantity relation extraction compared to 74.5% of baseline method. Another prompt learning result shows a 5% increase obtained in problem solving by injecting the extracted quantity relations into the baseline neural solvers