计算结构信息相似度的快速核算法

Jinmao Wei, Shuqin Wang, Jing Wang, Junping You
{"title":"计算结构信息相似度的快速核算法","authors":"Jinmao Wei, Shuqin Wang, Jing Wang, Junping You","doi":"10.1109/IS.2006.348394","DOIUrl":null,"url":null,"abstract":"Structural similarity computation plays a crucial role in many applications such as in searching similar documents, in comparing chemical compounds, in finding genetic similarities, etc. We propose in this paper to use structural information content (SIC) for measuring structural information, considering both the nodes and edges of trees. We utilize a binary encoding approach for assigning the weights of different layer nodes and determining if some tree is a subtree of another tree. By defining a fast kernel and recursively computing SICs, we evaluate the structural information similarities of data trees to pattern trees. In the paper, we present the algorithm for calculating SICs with computation complexity of O(n), and use simple examples to instantiate the performance of the proposed method","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Kernel for Calculating Structural Information Similarities\",\"authors\":\"Jinmao Wei, Shuqin Wang, Jing Wang, Junping You\",\"doi\":\"10.1109/IS.2006.348394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural similarity computation plays a crucial role in many applications such as in searching similar documents, in comparing chemical compounds, in finding genetic similarities, etc. We propose in this paper to use structural information content (SIC) for measuring structural information, considering both the nodes and edges of trees. We utilize a binary encoding approach for assigning the weights of different layer nodes and determining if some tree is a subtree of another tree. By defining a fast kernel and recursively computing SICs, we evaluate the structural information similarities of data trees to pattern trees. In the paper, we present the algorithm for calculating SICs with computation complexity of O(n), and use simple examples to instantiate the performance of the proposed method\",\"PeriodicalId\":116809,\"journal\":{\"name\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS.2006.348394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

结构相似性计算在查找相似文献、比较化合物、寻找遗传相似性等许多应用中起着至关重要的作用。本文提出使用结构信息含量(SIC)来测量树的结构信息,同时考虑树的节点和边缘。我们利用二进制编码方法来分配不同层节点的权重,并确定某些树是否是另一棵树的子树。通过定义快速核和递归计算sic,我们评估了数据树与模式树的结构信息相似性。本文给出了一种计算复杂度为0 (n)的sic的算法,并用简单的实例说明了该算法的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Kernel for Calculating Structural Information Similarities
Structural similarity computation plays a crucial role in many applications such as in searching similar documents, in comparing chemical compounds, in finding genetic similarities, etc. We propose in this paper to use structural information content (SIC) for measuring structural information, considering both the nodes and edges of trees. We utilize a binary encoding approach for assigning the weights of different layer nodes and determining if some tree is a subtree of another tree. By defining a fast kernel and recursively computing SICs, we evaluate the structural information similarities of data trees to pattern trees. In the paper, we present the algorithm for calculating SICs with computation complexity of O(n), and use simple examples to instantiate the performance of the proposed method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Neurofuzzy Adaptive Kalman Filter Artificial Intelligence Technique for Gene Expression Profiling of Urinary Bladder Cancer Evolutionary Support Vector Machines for Diabetes Mellitus Diagnosis IGUANA: Individuation of Global Unsafe ANomalies and Alarm activation Smart Data Analysis Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1