{"title":"计算结构信息相似度的快速核算法","authors":"Jinmao Wei, Shuqin Wang, Jing Wang, Junping You","doi":"10.1109/IS.2006.348394","DOIUrl":null,"url":null,"abstract":"Structural similarity computation plays a crucial role in many applications such as in searching similar documents, in comparing chemical compounds, in finding genetic similarities, etc. We propose in this paper to use structural information content (SIC) for measuring structural information, considering both the nodes and edges of trees. We utilize a binary encoding approach for assigning the weights of different layer nodes and determining if some tree is a subtree of another tree. By defining a fast kernel and recursively computing SICs, we evaluate the structural information similarities of data trees to pattern trees. In the paper, we present the algorithm for calculating SICs with computation complexity of O(n), and use simple examples to instantiate the performance of the proposed method","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Kernel for Calculating Structural Information Similarities\",\"authors\":\"Jinmao Wei, Shuqin Wang, Jing Wang, Junping You\",\"doi\":\"10.1109/IS.2006.348394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural similarity computation plays a crucial role in many applications such as in searching similar documents, in comparing chemical compounds, in finding genetic similarities, etc. We propose in this paper to use structural information content (SIC) for measuring structural information, considering both the nodes and edges of trees. We utilize a binary encoding approach for assigning the weights of different layer nodes and determining if some tree is a subtree of another tree. By defining a fast kernel and recursively computing SICs, we evaluate the structural information similarities of data trees to pattern trees. In the paper, we present the algorithm for calculating SICs with computation complexity of O(n), and use simple examples to instantiate the performance of the proposed method\",\"PeriodicalId\":116809,\"journal\":{\"name\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS.2006.348394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Kernel for Calculating Structural Information Similarities
Structural similarity computation plays a crucial role in many applications such as in searching similar documents, in comparing chemical compounds, in finding genetic similarities, etc. We propose in this paper to use structural information content (SIC) for measuring structural information, considering both the nodes and edges of trees. We utilize a binary encoding approach for assigning the weights of different layer nodes and determining if some tree is a subtree of another tree. By defining a fast kernel and recursively computing SICs, we evaluate the structural information similarities of data trees to pattern trees. In the paper, we present the algorithm for calculating SICs with computation complexity of O(n), and use simple examples to instantiate the performance of the proposed method