干、湿两种条件下煤矸石材料的室内压缩试验

David J. Williams, A. Kho
{"title":"干、湿两种条件下煤矸石材料的室内压缩试验","authors":"David J. Williams, A. Kho","doi":"10.1201/B17034-227","DOIUrl":null,"url":null,"abstract":"The conventional laboratory compression testing of geo-materials is carried out in a water bath to create near-saturated materials. The aim of this is reduce the materials to two phases: solids and water, which are both essentially incompressible. This makes the results of the testing easier to interpret, since if highly compressible air were present the pore volume, degree of saturation and hence matric suction would change continuously during compression. Testing under saturated conditions will also generally represent a worst case situation, inducing greater compression than testing under unsaturated conditions. In addition, the limited scale of conventional laboratory test apparatus restricts the maximum particle size that can be tested. This necessitates that coarse-grained materials, such as coal mine spoil, be scalped to enable laboratory compression testing. Australian coal mine spoil materials selected to cover a range from essentially uncemented rocks to cemented sandstones, were prepared loose in a 150 mm diameter by 150 mm high, 10 MPa oedometer, and subjected to incremental compression under dry (assampled moisture content) and wet (in a water bath) conditions. The dry state represents the as-dumped condition, while the wet state represents the ultimate wetting-up of the material in the spoil pile due to rainfall infiltration and groundwater inflow. In the dry state, the air in the voids of the specimens is free to compress, leading to an increase in the degree of saturation and a decrease in the matric suction. The initial and final moisture contents and densities of the specimens were recorded. In the paper, the results for uncemented and cemented coal mine spoil materials tested under dry and wet conditions are presented and compared with data from the literature.","PeriodicalId":294644,"journal":{"name":"Unsaturated Soils: Research & Applications","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laboratory compression of scalped coal mine spoil materials tested under dry and wet conditions\",\"authors\":\"David J. Williams, A. Kho\",\"doi\":\"10.1201/B17034-227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional laboratory compression testing of geo-materials is carried out in a water bath to create near-saturated materials. The aim of this is reduce the materials to two phases: solids and water, which are both essentially incompressible. This makes the results of the testing easier to interpret, since if highly compressible air were present the pore volume, degree of saturation and hence matric suction would change continuously during compression. Testing under saturated conditions will also generally represent a worst case situation, inducing greater compression than testing under unsaturated conditions. In addition, the limited scale of conventional laboratory test apparatus restricts the maximum particle size that can be tested. This necessitates that coarse-grained materials, such as coal mine spoil, be scalped to enable laboratory compression testing. Australian coal mine spoil materials selected to cover a range from essentially uncemented rocks to cemented sandstones, were prepared loose in a 150 mm diameter by 150 mm high, 10 MPa oedometer, and subjected to incremental compression under dry (assampled moisture content) and wet (in a water bath) conditions. The dry state represents the as-dumped condition, while the wet state represents the ultimate wetting-up of the material in the spoil pile due to rainfall infiltration and groundwater inflow. In the dry state, the air in the voids of the specimens is free to compress, leading to an increase in the degree of saturation and a decrease in the matric suction. The initial and final moisture contents and densities of the specimens were recorded. In the paper, the results for uncemented and cemented coal mine spoil materials tested under dry and wet conditions are presented and compared with data from the literature.\",\"PeriodicalId\":294644,\"journal\":{\"name\":\"Unsaturated Soils: Research & Applications\",\"volume\":\"203 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unsaturated Soils: Research & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/B17034-227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unsaturated Soils: Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/B17034-227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

土工材料的常规实验室压缩测试是在水浴中进行的,以产生接近饱和的材料。这样做的目的是将材料减少到两个阶段:固体和水,这两个阶段本质上都是不可压缩的。这使得测试结果更容易解释,因为如果存在高度可压缩空气,孔隙体积,饱和度和因此的基质吸力在压缩过程中会不断变化。饱和条件下的测试通常也代表最坏的情况,比非饱和条件下的测试产生更大的压缩。此外,传统实验室测试设备的规模限制了可测试的最大粒径。这就需要对粗粒度的材料,如煤矿矸石进行剥皮,以便进行实验室压缩测试。澳大利亚煤矿矸石材料的选择范围从基本上未胶结的岩石到胶结的砂岩,在直径150mm,高150mm, 10mpa的磨损计中进行松散制备,并在干燥(采样水分含量)和潮湿(在水浴中)条件下进行增量压缩。其中,干状态表示倾倒状态,湿状态表示由于降雨入渗和地下水流入,废土堆内物料最终被润湿。在干燥状态下,试样空隙中的空气可以自由压缩,导致饱和程度增加,基质吸力降低。记录了试样的初始和最终含水率和密度。本文介绍了未胶结和胶结的煤矿矸石材料在干湿条件下的试验结果,并与文献数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laboratory compression of scalped coal mine spoil materials tested under dry and wet conditions
The conventional laboratory compression testing of geo-materials is carried out in a water bath to create near-saturated materials. The aim of this is reduce the materials to two phases: solids and water, which are both essentially incompressible. This makes the results of the testing easier to interpret, since if highly compressible air were present the pore volume, degree of saturation and hence matric suction would change continuously during compression. Testing under saturated conditions will also generally represent a worst case situation, inducing greater compression than testing under unsaturated conditions. In addition, the limited scale of conventional laboratory test apparatus restricts the maximum particle size that can be tested. This necessitates that coarse-grained materials, such as coal mine spoil, be scalped to enable laboratory compression testing. Australian coal mine spoil materials selected to cover a range from essentially uncemented rocks to cemented sandstones, were prepared loose in a 150 mm diameter by 150 mm high, 10 MPa oedometer, and subjected to incremental compression under dry (assampled moisture content) and wet (in a water bath) conditions. The dry state represents the as-dumped condition, while the wet state represents the ultimate wetting-up of the material in the spoil pile due to rainfall infiltration and groundwater inflow. In the dry state, the air in the voids of the specimens is free to compress, leading to an increase in the degree of saturation and a decrease in the matric suction. The initial and final moisture contents and densities of the specimens were recorded. In the paper, the results for uncemented and cemented coal mine spoil materials tested under dry and wet conditions are presented and compared with data from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Field monitoring of a highway cut slope for rain-induced instability Evaluation on air-permeability of unsaturated soils subjected to freeze-thaw action Soil moisture profile of a water-shedding cover design in central Queensland Swelling characteristics and permeability of bentonite Modeling field load tests in lateritic unsaturated soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1