{"title":"稳定早产儿脑氧转运与胎儿血红蛋白水平的关系。","authors":"V T Ramaekers, H Daniels, P Casaer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The relative amount of regional cerebral oxygen transport was compared between different preterm infants by performing measurements of cerebral blood flow velocity, mean arterial blood pressure, whole blood viscosity and haemoglobin content for each individual. In addition the percentage of fetal haemoglobin was determined. On 25 occasions measurements of fetal haemoglobin and cerebral oxygen transport have been performed prior to and following a blood transfusion with adult red blood cells. Comparison of the data for cerebral oxygen transport suggests that the actual amount of cerebral oxygen transport is lowest at fetal haemoglobin levels below 30% and will increase progressively as soon as the percentage of fetal haemoglobin rises about 30%. Thus, at increasing fetal haemoglobin levels, cerebral haemodynamic mechanisms in the human neonate cause elevations of regional cerebral blood flow and oxygen transport. The found increase of cerebral blood flow and oxygen transport at high fetal haemoglobin levels will minimize the impeded dissociation and delivery of oxygen to brain tissues.</p>","PeriodicalId":15572,"journal":{"name":"Journal of developmental physiology","volume":"17 5","pages":"209-13"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain oxygen transport related to levels of fetal haemoglobin in stable preterm infants.\",\"authors\":\"V T Ramaekers, H Daniels, P Casaer\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The relative amount of regional cerebral oxygen transport was compared between different preterm infants by performing measurements of cerebral blood flow velocity, mean arterial blood pressure, whole blood viscosity and haemoglobin content for each individual. In addition the percentage of fetal haemoglobin was determined. On 25 occasions measurements of fetal haemoglobin and cerebral oxygen transport have been performed prior to and following a blood transfusion with adult red blood cells. Comparison of the data for cerebral oxygen transport suggests that the actual amount of cerebral oxygen transport is lowest at fetal haemoglobin levels below 30% and will increase progressively as soon as the percentage of fetal haemoglobin rises about 30%. Thus, at increasing fetal haemoglobin levels, cerebral haemodynamic mechanisms in the human neonate cause elevations of regional cerebral blood flow and oxygen transport. The found increase of cerebral blood flow and oxygen transport at high fetal haemoglobin levels will minimize the impeded dissociation and delivery of oxygen to brain tissues.</p>\",\"PeriodicalId\":15572,\"journal\":{\"name\":\"Journal of developmental physiology\",\"volume\":\"17 5\",\"pages\":\"209-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of developmental physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of developmental physiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Brain oxygen transport related to levels of fetal haemoglobin in stable preterm infants.
The relative amount of regional cerebral oxygen transport was compared between different preterm infants by performing measurements of cerebral blood flow velocity, mean arterial blood pressure, whole blood viscosity and haemoglobin content for each individual. In addition the percentage of fetal haemoglobin was determined. On 25 occasions measurements of fetal haemoglobin and cerebral oxygen transport have been performed prior to and following a blood transfusion with adult red blood cells. Comparison of the data for cerebral oxygen transport suggests that the actual amount of cerebral oxygen transport is lowest at fetal haemoglobin levels below 30% and will increase progressively as soon as the percentage of fetal haemoglobin rises about 30%. Thus, at increasing fetal haemoglobin levels, cerebral haemodynamic mechanisms in the human neonate cause elevations of regional cerebral blood flow and oxygen transport. The found increase of cerebral blood flow and oxygen transport at high fetal haemoglobin levels will minimize the impeded dissociation and delivery of oxygen to brain tissues.