{"title":"基于粒子群算法的数据聚类","authors":"D. V. D. Merwe, A. Engelbrecht","doi":"10.1109/CEC.2003.1299577","DOIUrl":null,"url":null,"abstract":"This paper proposes two new approaches to using PSO to cluster data. It is shown how PSO can be used to find the centroids of a user specified number of clusters. The algorithm is then extended to use K-means clustering to seed the initial swarm. This second algorithm basically uses PSO to refine the clusters formed by K-means. The new PSO algorithms are evaluated on six data sets, and compared to the performance of K-means clustering. Results show that both PSO clustering techniques have much potential.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"832","resultStr":"{\"title\":\"Data clustering using particle swarm optimization\",\"authors\":\"D. V. D. Merwe, A. Engelbrecht\",\"doi\":\"10.1109/CEC.2003.1299577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes two new approaches to using PSO to cluster data. It is shown how PSO can be used to find the centroids of a user specified number of clusters. The algorithm is then extended to use K-means clustering to seed the initial swarm. This second algorithm basically uses PSO to refine the clusters formed by K-means. The new PSO algorithms are evaluated on six data sets, and compared to the performance of K-means clustering. Results show that both PSO clustering techniques have much potential.\",\"PeriodicalId\":416243,\"journal\":{\"name\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"832\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2003.1299577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper proposes two new approaches to using PSO to cluster data. It is shown how PSO can be used to find the centroids of a user specified number of clusters. The algorithm is then extended to use K-means clustering to seed the initial swarm. This second algorithm basically uses PSO to refine the clusters formed by K-means. The new PSO algorithms are evaluated on six data sets, and compared to the performance of K-means clustering. Results show that both PSO clustering techniques have much potential.