基于稀疏编码的支持向量机分类器人脸识别

Arian Yousefiankalareh, Taraneh Kamyab, Farzad Shahabi, Ehsan Salajegheh, Hossein Mirzanejad, Mahsa Madadi Masouleh
{"title":"基于稀疏编码的支持向量机分类器人脸识别","authors":"Arian Yousefiankalareh, Taraneh Kamyab, Farzad Shahabi, Ehsan Salajegheh, Hossein Mirzanejad, Mahsa Madadi Masouleh","doi":"10.1109/ITSS-IoE53029.2021.9615322","DOIUrl":null,"url":null,"abstract":"In this paper, a system for face detection based on the generalized BOW method is proposed. We have utilized the space pyramid matching (SPM) method to overcome the neglected problem of space order of BOW. In the feature extraction stage, we have used SIFT method which is resistant against local variations. Sparse presentations usually are linearly separable; hence in the proposed system, we have utilized the sparse codding method in the feature learning stage. In the polling stage, we have used maximum polling operation to reach a unified vector from multiple descriptor vectors. Finally, a support vector machine classifier is used to classify face descriptor vectors. Simulation results show high accuracy of classification (ACC=0.9952) and its resistivity against previous methods.","PeriodicalId":230566,"journal":{"name":"2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Face recognition based on sparse coding using support vector machine classifier\",\"authors\":\"Arian Yousefiankalareh, Taraneh Kamyab, Farzad Shahabi, Ehsan Salajegheh, Hossein Mirzanejad, Mahsa Madadi Masouleh\",\"doi\":\"10.1109/ITSS-IoE53029.2021.9615322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a system for face detection based on the generalized BOW method is proposed. We have utilized the space pyramid matching (SPM) method to overcome the neglected problem of space order of BOW. In the feature extraction stage, we have used SIFT method which is resistant against local variations. Sparse presentations usually are linearly separable; hence in the proposed system, we have utilized the sparse codding method in the feature learning stage. In the polling stage, we have used maximum polling operation to reach a unified vector from multiple descriptor vectors. Finally, a support vector machine classifier is used to classify face descriptor vectors. Simulation results show high accuracy of classification (ACC=0.9952) and its resistivity against previous methods.\",\"PeriodicalId\":230566,\"journal\":{\"name\":\"2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSS-IoE53029.2021.9615322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSS-IoE53029.2021.9615322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于广义BOW方法的人脸检测系统。我们利用空间金字塔匹配(SPM)方法克服了BOW中被忽略的空间顺序问题。在特征提取阶段,我们采用了抗局部变异的SIFT方法。稀疏表示通常是线性可分的;因此,在该系统中,我们在特征学习阶段使用了稀疏编码方法。在轮询阶段,我们使用最大轮询操作从多个描述符向量中得到一个统一的向量。最后,利用支持向量机分类器对人脸描述子向量进行分类。仿真结果表明,该方法具有较高的分类精度(ACC=0.9952)和相对于以往方法的电阻率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face recognition based on sparse coding using support vector machine classifier
In this paper, a system for face detection based on the generalized BOW method is proposed. We have utilized the space pyramid matching (SPM) method to overcome the neglected problem of space order of BOW. In the feature extraction stage, we have used SIFT method which is resistant against local variations. Sparse presentations usually are linearly separable; hence in the proposed system, we have utilized the sparse codding method in the feature learning stage. In the polling stage, we have used maximum polling operation to reach a unified vector from multiple descriptor vectors. Finally, a support vector machine classifier is used to classify face descriptor vectors. Simulation results show high accuracy of classification (ACC=0.9952) and its resistivity against previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attendance Management System Using Facial Recognition and Image Augmentation Technique A Fuzzy GPSR Route Selection Based on Link Quality and Neighbor Node in VANET Program Abstract Book Ultra-Low Profile, Compact Quasi-Yagi Antenna Suitable for IoT Application ITSS-IoE 2021 Cover Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1