油浸式逆变电流互感器温度分布研究

Xiaoping Yang, Yiming Wu, Jiansheng Li, Chao Wei, Shengquan Wang, Leifeng Huang, Bonan Li, Youyuan Wang
{"title":"油浸式逆变电流互感器温度分布研究","authors":"Xiaoping Yang, Yiming Wu, Jiansheng Li, Chao Wei, Shengquan Wang, Leifeng Huang, Bonan Li, Youyuan Wang","doi":"10.1109/ICDL.2019.8796597","DOIUrl":null,"url":null,"abstract":"Oil-immersed inverted current transformer, as an important electrical equipment in power grid, is mainly used in power plants and substations. Accidents caused by oil-immersed inverted current transformers are generally accompanied by explosions, which not only reduce the amount of electricity delivered, but also damage other nearby equipment in the substation and even cause casualties. Therefore, it is very necessary to detect and evaluate the operation status of oil-immersed inverted current transformer and study the fault prevention technology to reduce the probability of accidents. According to the common faults of oil-immersed inverted current transformer, this paper firstly analyzed the parts and components with high fault rate of current transformer. Combined with the operating condition of current transformer and its internal insulation structure, the internal temperature field simulation model of current transformer and the temperature calculation model of key parts were established. It was found that the temperature near the winding of the oil-immersed inverted current transformer was the highest, while the temperature rise at the lower part far from the heat source was very small. The simulation results were basically consistent with the experimental results, and it was found that the temperature distribution on both sides of the primary conductor in the head region of the current transformer was symmetrical.","PeriodicalId":102217,"journal":{"name":"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)","volume":"363 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on temperature distribution in oil-immersed inverted current transformer\",\"authors\":\"Xiaoping Yang, Yiming Wu, Jiansheng Li, Chao Wei, Shengquan Wang, Leifeng Huang, Bonan Li, Youyuan Wang\",\"doi\":\"10.1109/ICDL.2019.8796597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oil-immersed inverted current transformer, as an important electrical equipment in power grid, is mainly used in power plants and substations. Accidents caused by oil-immersed inverted current transformers are generally accompanied by explosions, which not only reduce the amount of electricity delivered, but also damage other nearby equipment in the substation and even cause casualties. Therefore, it is very necessary to detect and evaluate the operation status of oil-immersed inverted current transformer and study the fault prevention technology to reduce the probability of accidents. According to the common faults of oil-immersed inverted current transformer, this paper firstly analyzed the parts and components with high fault rate of current transformer. Combined with the operating condition of current transformer and its internal insulation structure, the internal temperature field simulation model of current transformer and the temperature calculation model of key parts were established. It was found that the temperature near the winding of the oil-immersed inverted current transformer was the highest, while the temperature rise at the lower part far from the heat source was very small. The simulation results were basically consistent with the experimental results, and it was found that the temperature distribution on both sides of the primary conductor in the head region of the current transformer was symmetrical.\",\"PeriodicalId\":102217,\"journal\":{\"name\":\"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)\",\"volume\":\"363 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL.2019.8796597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2019.8796597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

油浸式逆变电流互感器是电网中重要的电气设备,主要用于发电厂和变电站。油浸式逆变电流互感器引起的事故一般都伴有爆炸,不仅使送电量减少,还会损坏变电站附近的其他设备,甚至造成人员伤亡。因此,对油浸式逆变电流互感器的运行状态进行检测和评估,研究故障预防技术,降低事故发生的概率是十分必要的。针对油浸式逆变电流互感器的常见故障,首先对电流互感器的高故障率零部件进行了分析。结合电流互感器运行工况及其内部绝缘结构,建立了电流互感器内部温度场仿真模型和关键部件温度计算模型。研究发现,油浸式逆变电流互感器绕组附近的温度最高,而远离热源的下部温升很小。仿真结果与实验结果基本一致,发现电流互感器头区一次导体两侧的温度分布是对称的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on temperature distribution in oil-immersed inverted current transformer
Oil-immersed inverted current transformer, as an important electrical equipment in power grid, is mainly used in power plants and substations. Accidents caused by oil-immersed inverted current transformers are generally accompanied by explosions, which not only reduce the amount of electricity delivered, but also damage other nearby equipment in the substation and even cause casualties. Therefore, it is very necessary to detect and evaluate the operation status of oil-immersed inverted current transformer and study the fault prevention technology to reduce the probability of accidents. According to the common faults of oil-immersed inverted current transformer, this paper firstly analyzed the parts and components with high fault rate of current transformer. Combined with the operating condition of current transformer and its internal insulation structure, the internal temperature field simulation model of current transformer and the temperature calculation model of key parts were established. It was found that the temperature near the winding of the oil-immersed inverted current transformer was the highest, while the temperature rise at the lower part far from the heat source was very small. The simulation results were basically consistent with the experimental results, and it was found that the temperature distribution on both sides of the primary conductor in the head region of the current transformer was symmetrical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SF6 Gas Replacement in Pulsed High Voltage Coaxial Cables Electron Self-Trapping in Vortex Rings in Superfluid Helium Numerical Study of the Thermal Excitation Applied to a Dielectric Liquid Film Assessing the Production and Loss of Electrons from Conduction Currents in Mineral Oil The conformity of DGA interpretation techniques: Experience from transformer 132 units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1