植物叶片病害识别中存在畸变的深度学习模型性能分析

Neha Sandotra, P. Mahajan, P. Abrol, P. Lehana
{"title":"植物叶片病害识别中存在畸变的深度学习模型性能分析","authors":"Neha Sandotra, P. Mahajan, P. Abrol, P. Lehana","doi":"10.11591/ijict.v12i2.pp115-126","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNN) trained using deep learning (DL) have advanced dramatically in recent years. Researchers from a variety of fields have been motivated by the success of CNNs in computer vision to develop better CNN models for use in other visually-rich settings. Successes in image classification and research have been achieved in a wide variety of domains throughout the past year. Among the many popularized image classification techniques, the detection of plant leaf diseases has received extensive research. As a result of the nature of the procedure, image quality is often degraded and distortions are introduced during the capturing of the image. In this study, we look into how various CNN models are affected by distortions. Corn-maze leaf photos from the 4,188-image corn or maize leaf Dataset (split into four categories) are under consideration. To evaluate how well they handle noise and blur, researchers have deployed pre-trained deep CNN models like visual geometry group (VGG), InceptionV3, ResNet50, and EfficientNetB0. Classification accuracy and metrics like as recall and f1-score are used to evaluate CNN performance.","PeriodicalId":245958,"journal":{"name":"International Journal of Informatics and Communication Technology (IJ-ICT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analyzing performance of deep learning models under the presence of distortions in identifying plant leaf disease\",\"authors\":\"Neha Sandotra, P. Mahajan, P. Abrol, P. Lehana\",\"doi\":\"10.11591/ijict.v12i2.pp115-126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNN) trained using deep learning (DL) have advanced dramatically in recent years. Researchers from a variety of fields have been motivated by the success of CNNs in computer vision to develop better CNN models for use in other visually-rich settings. Successes in image classification and research have been achieved in a wide variety of domains throughout the past year. Among the many popularized image classification techniques, the detection of plant leaf diseases has received extensive research. As a result of the nature of the procedure, image quality is often degraded and distortions are introduced during the capturing of the image. In this study, we look into how various CNN models are affected by distortions. Corn-maze leaf photos from the 4,188-image corn or maize leaf Dataset (split into four categories) are under consideration. To evaluate how well they handle noise and blur, researchers have deployed pre-trained deep CNN models like visual geometry group (VGG), InceptionV3, ResNet50, and EfficientNetB0. Classification accuracy and metrics like as recall and f1-score are used to evaluate CNN performance.\",\"PeriodicalId\":245958,\"journal\":{\"name\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijict.v12i2.pp115-126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Informatics and Communication Technology (IJ-ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijict.v12i2.pp115-126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,使用深度学习(DL)训练的卷积神经网络(CNN)取得了巨大的进步。CNN在计算机视觉方面的成功激发了来自各个领域的研究人员开发更好的CNN模型,用于其他视觉丰富的环境。在过去的一年里,图像分类和研究在各个领域都取得了成功。在众多流行的图像分类技术中,植物叶片病害的检测得到了广泛的研究。由于该过程的性质,图像质量经常下降,并且在捕获图像期间引入了失真。在这项研究中,我们研究了各种CNN模型是如何受到扭曲的影响的。来自4188张玉米图像或玉米叶片数据集(分为四类)的玉米迷宫叶片照片正在考虑中。为了评估它们处理噪声和模糊的效果,研究人员部署了预训练的深度CNN模型,如视觉几何组(VGG)、InceptionV3、ResNet50和EfficientNetB0。分类精度和指标,如召回率和f1-score被用来评估CNN的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing performance of deep learning models under the presence of distortions in identifying plant leaf disease
Convolutional neural networks (CNN) trained using deep learning (DL) have advanced dramatically in recent years. Researchers from a variety of fields have been motivated by the success of CNNs in computer vision to develop better CNN models for use in other visually-rich settings. Successes in image classification and research have been achieved in a wide variety of domains throughout the past year. Among the many popularized image classification techniques, the detection of plant leaf diseases has received extensive research. As a result of the nature of the procedure, image quality is often degraded and distortions are introduced during the capturing of the image. In this study, we look into how various CNN models are affected by distortions. Corn-maze leaf photos from the 4,188-image corn or maize leaf Dataset (split into four categories) are under consideration. To evaluate how well they handle noise and blur, researchers have deployed pre-trained deep CNN models like visual geometry group (VGG), InceptionV3, ResNet50, and EfficientNetB0. Classification accuracy and metrics like as recall and f1-score are used to evaluate CNN performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review-based analysis of clustering approaches in a recommendation system Adaptive resource allocation in NOMA-enabled backscatter communications systems Navigating the cyber forensics landscape a review of recent innovations ChatGPT's effect on the job market: how automation affects employment in sectors using ChatGPT for customer service Predicting anomalies in computer networks using autoencoder-based representation learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1