Jingbo Zhang, X. Zeng, Yinghua Lu, Lei Zhang, Meng Li
{"title":"一种基于一类一网络的离线签名验证方法","authors":"Jingbo Zhang, X. Zeng, Yinghua Lu, Lei Zhang, Meng Li","doi":"10.1109/ICNC.2007.118","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel off-line signature verification method based on one-class-one-network classification, using four groups features. The features include direction features, texture features, dynamic features and complexity index. At last, one-class-one-network classifier is used to verify the signatures. The signature verification system was experimented on real data sets and the results show the system is effective with the average error rate can reach 1.8%, which is obviously satisfactory.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Novel Off-line Signature Verification Based on One-class-one-network\",\"authors\":\"Jingbo Zhang, X. Zeng, Yinghua Lu, Lei Zhang, Meng Li\",\"doi\":\"10.1109/ICNC.2007.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel off-line signature verification method based on one-class-one-network classification, using four groups features. The features include direction features, texture features, dynamic features and complexity index. At last, one-class-one-network classifier is used to verify the signatures. The signature verification system was experimented on real data sets and the results show the system is effective with the average error rate can reach 1.8%, which is obviously satisfactory.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Off-line Signature Verification Based on One-class-one-network
This paper proposes a novel off-line signature verification method based on one-class-one-network classification, using four groups features. The features include direction features, texture features, dynamic features and complexity index. At last, one-class-one-network classifier is used to verify the signatures. The signature verification system was experimented on real data sets and the results show the system is effective with the average error rate can reach 1.8%, which is obviously satisfactory.