Yuanchao Su, Xu Sun, Lianru Gao, Jun Yu Li, Bing Zhang
{"title":"高光谱遥感图像端元提取的改进离散群智能算法","authors":"Yuanchao Su, Xu Sun, Lianru Gao, Jun Yu Li, Bing Zhang","doi":"10.1109/WHISPERS.2016.8071768","DOIUrl":null,"url":null,"abstract":"Endmember extraction is a key step in hyperspectral unmixing. This paper proposes a new endmember extraction framework based on the swarm intelligence algorithm. We adopt a discrete structure because pixels exist within a discrete frame. Traditional swarm intelligence algorithms produce stacked solutions based on similar endmembers in the same class. We introduce a “distance” factor into the objective function to limit the number of endmembers per class. We then propose three endmember extraction methods based on the artificial bee colony (ABC), ant colony optimization (ACO) and particle swarm optimization (PSO) algorithms. Experiments with both simulated and actual hyperspectral image data indicate that the proposed framework can significantly improve the accuracy of endmember extraction.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved discrete swarm intelligence algorithms for endmember extraction in hyperspectral remote sensing image\",\"authors\":\"Yuanchao Su, Xu Sun, Lianru Gao, Jun Yu Li, Bing Zhang\",\"doi\":\"10.1109/WHISPERS.2016.8071768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Endmember extraction is a key step in hyperspectral unmixing. This paper proposes a new endmember extraction framework based on the swarm intelligence algorithm. We adopt a discrete structure because pixels exist within a discrete frame. Traditional swarm intelligence algorithms produce stacked solutions based on similar endmembers in the same class. We introduce a “distance” factor into the objective function to limit the number of endmembers per class. We then propose three endmember extraction methods based on the artificial bee colony (ABC), ant colony optimization (ACO) and particle swarm optimization (PSO) algorithms. Experiments with both simulated and actual hyperspectral image data indicate that the proposed framework can significantly improve the accuracy of endmember extraction.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved discrete swarm intelligence algorithms for endmember extraction in hyperspectral remote sensing image
Endmember extraction is a key step in hyperspectral unmixing. This paper proposes a new endmember extraction framework based on the swarm intelligence algorithm. We adopt a discrete structure because pixels exist within a discrete frame. Traditional swarm intelligence algorithms produce stacked solutions based on similar endmembers in the same class. We introduce a “distance” factor into the objective function to limit the number of endmembers per class. We then propose three endmember extraction methods based on the artificial bee colony (ABC), ant colony optimization (ACO) and particle swarm optimization (PSO) algorithms. Experiments with both simulated and actual hyperspectral image data indicate that the proposed framework can significantly improve the accuracy of endmember extraction.