基于转矩质量比优化的同轴磁力联轴器的磁-机设计与研制

O. Tweedy, Y. Akcay, P. Giangrande, M. Galea
{"title":"基于转矩质量比优化的同轴磁力联轴器的磁-机设计与研制","authors":"O. Tweedy, Y. Akcay, P. Giangrande, M. Galea","doi":"10.1109/IEMDC47953.2021.9449544","DOIUrl":null,"url":null,"abstract":"This work covers the design and analysis of a coaxial magnetic coupling with the aim to optimize the torque to mass ratio. Magnetic couplings provide several unique benefits over standard mechanical couplings that are made possible via magnetic torque transmission including reduced maintenance, greater tolerance for misalignment and intrinsic overload protection. The main disadvantage of magnetic couplings is that their torque to mass ratio is significantly lower than equivalent mechanical couplings. 2D magnetostatic and 3D finite element mechanical models are used to analyze the proposed coupling geometry and ensure it can transfer a maximum torque of 224 Nm and operate at a steady rotational speed of 1000 RPM. The relationship between the magnetic design parameters (pole pairs number, air gap, etc.) and the target performance parameters (torque and relative rotor angle) are established and used to develop a rotor geometry that maximizes the peak static torque. A parametric static stress analysis of the coupling geometry is also performed to reduce its mass and obtain an optimal torque to mass ratio. Finally, the torque to mass ratio of the optimized magnetic coupling is compared with mechanical couplings to demonstrate improved practicality of the design.","PeriodicalId":106489,"journal":{"name":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Magneto-mechanical Design and Development of a Coaxial Magnetic Coupling with Optimization of Torque to Mass Ratio\",\"authors\":\"O. Tweedy, Y. Akcay, P. Giangrande, M. Galea\",\"doi\":\"10.1109/IEMDC47953.2021.9449544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work covers the design and analysis of a coaxial magnetic coupling with the aim to optimize the torque to mass ratio. Magnetic couplings provide several unique benefits over standard mechanical couplings that are made possible via magnetic torque transmission including reduced maintenance, greater tolerance for misalignment and intrinsic overload protection. The main disadvantage of magnetic couplings is that their torque to mass ratio is significantly lower than equivalent mechanical couplings. 2D magnetostatic and 3D finite element mechanical models are used to analyze the proposed coupling geometry and ensure it can transfer a maximum torque of 224 Nm and operate at a steady rotational speed of 1000 RPM. The relationship between the magnetic design parameters (pole pairs number, air gap, etc.) and the target performance parameters (torque and relative rotor angle) are established and used to develop a rotor geometry that maximizes the peak static torque. A parametric static stress analysis of the coupling geometry is also performed to reduce its mass and obtain an optimal torque to mass ratio. Finally, the torque to mass ratio of the optimized magnetic coupling is compared with mechanical couplings to demonstrate improved practicality of the design.\",\"PeriodicalId\":106489,\"journal\":{\"name\":\"2021 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMDC47953.2021.9449544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC47953.2021.9449544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对同轴磁力联轴器进行了设计和分析,以优化其转矩质量比。与标准机械联轴器相比,磁性联轴器具有几个独特的优点,通过磁性扭矩传输实现,包括减少维护,更大的偏差容忍度和固有过载保护。磁力联轴器的主要缺点是其转矩质量比明显低于等效的机械联轴器。利用二维静磁和三维有限元力学模型分析了所提出的耦合几何形状,并确保其可以传递最大扭矩224 Nm,并在1000 RPM的稳定转速下运行。建立了磁性设计参数(极对数、气隙等)与目标性能参数(转矩和相对转子角度)之间的关系,并利用该关系制定了使静转矩峰值最大化的转子几何形状。为了减小其质量并获得最佳转矩质量比,还对耦合几何结构进行了参数化静应力分析。最后,将优化后的磁力联轴器与机械联轴器的转矩质量比进行了比较,验证了设计的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magneto-mechanical Design and Development of a Coaxial Magnetic Coupling with Optimization of Torque to Mass Ratio
This work covers the design and analysis of a coaxial magnetic coupling with the aim to optimize the torque to mass ratio. Magnetic couplings provide several unique benefits over standard mechanical couplings that are made possible via magnetic torque transmission including reduced maintenance, greater tolerance for misalignment and intrinsic overload protection. The main disadvantage of magnetic couplings is that their torque to mass ratio is significantly lower than equivalent mechanical couplings. 2D magnetostatic and 3D finite element mechanical models are used to analyze the proposed coupling geometry and ensure it can transfer a maximum torque of 224 Nm and operate at a steady rotational speed of 1000 RPM. The relationship between the magnetic design parameters (pole pairs number, air gap, etc.) and the target performance parameters (torque and relative rotor angle) are established and used to develop a rotor geometry that maximizes the peak static torque. A parametric static stress analysis of the coupling geometry is also performed to reduce its mass and obtain an optimal torque to mass ratio. Finally, the torque to mass ratio of the optimized magnetic coupling is compared with mechanical couplings to demonstrate improved practicality of the design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel Liquid Cooling Technology for Modular Consequent-Pole PM Machines Static Eccentricity Fault Detection for PSH-type Induction Motors Considering High-order Air Gap Permeance Harmonics Improving the Thermal Conductivity of Form-Wound Litz-Wire Windings for Slot-less Machines Design and Experimental Analysis of a Selfbearing Double-Stator Linear-Rotary Actuator Analysis of electric motor alternatives for Primary Flight Surface Actuators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1