生成回归量的偏均值过程:连续处理效果和不可分离模型

Ying-Ying Lee
{"title":"生成回归量的偏均值过程:连续处理效果和不可分离模型","authors":"Ying-Ying Lee","doi":"10.2139/ssrn.3250485","DOIUrl":null,"url":null,"abstract":"Partial mean processes with generated regressors arise in several important econometric problems, such as the distribution of potential outcomes with continuous treatments and the quantile structural function in a nonseparable triangular model. This paper proposes a fully nonparametric estimator for the partial mean process, where the second step consists of a kernel regression on regressors that are estimated in the first step. The main contribution is a uniform expansion that characterizes in detail how the estimation error associated with the generated regressor affects the limiting distribution of the marginal integration estimator. The general results are illustrated with three examples: control variables in triangular models (Newey, Powell, and Vella, 1999; Imbens and Newey, 2009), the generalized propensity score for a continuus treatment (Hirano and Imbens, 2004), and the propensity score for sample selection (Das, Newey, and Vella, 2003).","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models\",\"authors\":\"Ying-Ying Lee\",\"doi\":\"10.2139/ssrn.3250485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial mean processes with generated regressors arise in several important econometric problems, such as the distribution of potential outcomes with continuous treatments and the quantile structural function in a nonseparable triangular model. This paper proposes a fully nonparametric estimator for the partial mean process, where the second step consists of a kernel regression on regressors that are estimated in the first step. The main contribution is a uniform expansion that characterizes in detail how the estimation error associated with the generated regressor affects the limiting distribution of the marginal integration estimator. The general results are illustrated with three examples: control variables in triangular models (Newey, Powell, and Vella, 1999; Imbens and Newey, 2009), the generalized propensity score for a continuus treatment (Hirano and Imbens, 2004), and the propensity score for sample selection (Das, Newey, and Vella, 2003).\",\"PeriodicalId\":273058,\"journal\":{\"name\":\"ERN: Model Construction & Estimation (Topic)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Model Construction & Estimation (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3250485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3250485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

产生回归量的偏均值过程出现在几个重要的计量经济学问题中,例如连续处理的潜在结果的分布和不可分三角模型中的分位数结构函数。本文针对偏均值过程提出了一个完全非参数估计器,其中第二步是对第一步估计的回归量进行核回归。主要贡献是统一展开,详细描述了与生成的回归量相关的估计误差如何影响边际积分估计量的极限分布。一般结果用三个例子来说明:三角模型中的控制变量(Newey, Powell, and Vella, 1999;Imbens和Newey, 2009),连续治疗的广义倾向得分(Hirano和Imbens, 2004),以及样本选择的倾向得分(Das, Newey, and Vella, 2003)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models
Partial mean processes with generated regressors arise in several important econometric problems, such as the distribution of potential outcomes with continuous treatments and the quantile structural function in a nonseparable triangular model. This paper proposes a fully nonparametric estimator for the partial mean process, where the second step consists of a kernel regression on regressors that are estimated in the first step. The main contribution is a uniform expansion that characterizes in detail how the estimation error associated with the generated regressor affects the limiting distribution of the marginal integration estimator. The general results are illustrated with three examples: control variables in triangular models (Newey, Powell, and Vella, 1999; Imbens and Newey, 2009), the generalized propensity score for a continuus treatment (Hirano and Imbens, 2004), and the propensity score for sample selection (Das, Newey, and Vella, 2003).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonparametric Tests of Conditional Independence for Time Series Estimating Demand with Multi-Homing in Two-Sided Markets Does Court Type, Size and Employee Satisfaction Affect Court Speed?. Hierarchical Linear Modelling With Evidence from Kenya Development of Estimation and Forecasting Method in Intelligent Decision Support Systems Estimating Financial Networks by Realized Interdependencies: A Restricted Autoregressive Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1