基于风格特征和感性度量的印象估计模型和模式搜索系统

N. Sunda, Kensuke Tobitani, A. Takemoto, Iori Tani, Yusuke Tani, Taishi Fujiwara, N. Nagata, Nobufumi Morita
{"title":"基于风格特征和感性度量的印象估计模型和模式搜索系统","authors":"N. Sunda, Kensuke Tobitani, A. Takemoto, Iori Tani, Yusuke Tani, Taishi Fujiwara, N. Nagata, Nobufumi Morita","doi":"10.1145/3281505.3281610","DOIUrl":null,"url":null,"abstract":"In this study, we aimed to construct impression estimation models of clothing patterns based on style features and Kansei metric. We first conducted a subjective evaluation experiment and a factor analysis, and quantified visual impressions of flower patterns. Following that, we used style features using CNN as image features suitable for representing flower patterns. Then, with a Lasso regression, we reduced the dimension based on Kansei metric (impression evaluation) and modeled the relationship between visual impressions and image features. Furthermore, we implemented a pattern search system using the modeled relationship.","PeriodicalId":138249,"journal":{"name":"Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impression estimation model and pattern search system based on style features and Kansei metric\",\"authors\":\"N. Sunda, Kensuke Tobitani, A. Takemoto, Iori Tani, Yusuke Tani, Taishi Fujiwara, N. Nagata, Nobufumi Morita\",\"doi\":\"10.1145/3281505.3281610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we aimed to construct impression estimation models of clothing patterns based on style features and Kansei metric. We first conducted a subjective evaluation experiment and a factor analysis, and quantified visual impressions of flower patterns. Following that, we used style features using CNN as image features suitable for representing flower patterns. Then, with a Lasso regression, we reduced the dimension based on Kansei metric (impression evaluation) and modeled the relationship between visual impressions and image features. Furthermore, we implemented a pattern search system using the modeled relationship.\",\"PeriodicalId\":138249,\"journal\":{\"name\":\"Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3281505.3281610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3281505.3281610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们旨在建立基于风格特征和感性度量的服装图案印象估计模型。我们首先进行了主观评价实验和因子分析,量化了花卉图案的视觉印象。接下来,我们使用CNN的样式特征作为适合表示花卉图案的图像特征。然后,使用Lasso回归,基于感性度量(印象评价)降维,建立视觉印象与图像特征之间的关系模型。此外,我们利用建模的关系实现了一个模式搜索系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impression estimation model and pattern search system based on style features and Kansei metric
In this study, we aimed to construct impression estimation models of clothing patterns based on style features and Kansei metric. We first conducted a subjective evaluation experiment and a factor analysis, and quantified visual impressions of flower patterns. Following that, we used style features using CNN as image features suitable for representing flower patterns. Then, with a Lasso regression, we reduced the dimension based on Kansei metric (impression evaluation) and modeled the relationship between visual impressions and image features. Furthermore, we implemented a pattern search system using the modeled relationship.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XRCreator Indoor AR navigation using tilesets "Virtual ability simulation" to boost rehabilitation exercise performance and confidence for people with disability BoatAR An evaluation of smartphone-based interaction in AR for constrained object manipulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1