仿射非线性离散系统的最优控制

T. Dierks, S. Jagannthan
{"title":"仿射非线性离散系统的最优控制","authors":"T. Dierks, S. Jagannthan","doi":"10.1109/MED.2009.5164741","DOIUrl":null,"url":null,"abstract":"In this paper, direct neural dynamic programming techniques are utilized to solve the Hamilton Jacobi-Bellman equation in real time for the optimal control of general affine nonlinear discrete-time systems. In the presence of partially unknown dynamics, the optimal regulation control problem is addressed while the optimal tracking control problem is addressed in the presence of known dynamics. Each design entails two portions: an action neural network (NN) that is designed to produce a nearly optimal control signal, and a critic NN which evaluates the performance of the system. Novel weight update laws for the critic and action NN's are derived, and all parameters are tuned online. Lyapunov techniques are used to show that all signals are uniformly ultimately bounded (UUB) and that the output of the action NN approaches the optimal control input with small bounded error. Simulation results are also presented to demonstrate the effectiveness of the approach.","PeriodicalId":422386,"journal":{"name":"2009 17th Mediterranean Conference on Control and Automation","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Optimal control of affine nonlinear discrete-time systems\",\"authors\":\"T. Dierks, S. Jagannthan\",\"doi\":\"10.1109/MED.2009.5164741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, direct neural dynamic programming techniques are utilized to solve the Hamilton Jacobi-Bellman equation in real time for the optimal control of general affine nonlinear discrete-time systems. In the presence of partially unknown dynamics, the optimal regulation control problem is addressed while the optimal tracking control problem is addressed in the presence of known dynamics. Each design entails two portions: an action neural network (NN) that is designed to produce a nearly optimal control signal, and a critic NN which evaluates the performance of the system. Novel weight update laws for the critic and action NN's are derived, and all parameters are tuned online. Lyapunov techniques are used to show that all signals are uniformly ultimately bounded (UUB) and that the output of the action NN approaches the optimal control input with small bounded error. Simulation results are also presented to demonstrate the effectiveness of the approach.\",\"PeriodicalId\":422386,\"journal\":{\"name\":\"2009 17th Mediterranean Conference on Control and Automation\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 17th Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2009.5164741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 17th Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2009.5164741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

本文利用直接神经动态规划技术实时求解Hamilton Jacobi-Bellman方程,用于一般仿射非线性离散系统的最优控制。在动力学部分未知的情况下,研究了最优调节控制问题,在动力学已知的情况下,研究了最优跟踪控制问题。每个设计都包含两个部分:一个动作神经网络(NN),用于产生几乎最优的控制信号,以及一个评价神经网络,用于评估系统的性能。导出了新的评价神经网络和动作神经网络的权值更新规律,并在线调整了所有参数。利用李雅普诺夫技术证明了所有信号都是一致最终有界的(UUB),并且动作神经网络的输出以较小的有界误差接近最优控制输入。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal control of affine nonlinear discrete-time systems
In this paper, direct neural dynamic programming techniques are utilized to solve the Hamilton Jacobi-Bellman equation in real time for the optimal control of general affine nonlinear discrete-time systems. In the presence of partially unknown dynamics, the optimal regulation control problem is addressed while the optimal tracking control problem is addressed in the presence of known dynamics. Each design entails two portions: an action neural network (NN) that is designed to produce a nearly optimal control signal, and a critic NN which evaluates the performance of the system. Novel weight update laws for the critic and action NN's are derived, and all parameters are tuned online. Lyapunov techniques are used to show that all signals are uniformly ultimately bounded (UUB) and that the output of the action NN approaches the optimal control input with small bounded error. Simulation results are also presented to demonstrate the effectiveness of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An application of the RMMAC methodology to an unstable plant Low-cost embedded solution for PID controllers of DC motors A grid forming target allocation strategy for multi robot systems. Modeling and motion control of an articulated-frame-steering hydraulic mobile machine Approximate dynamic programming for continuous state and control problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1