RFI仿真与性能验证框架

G. Hovey, Federico Di Vruno
{"title":"RFI仿真与性能验证框架","authors":"G. Hovey, Federico Di Vruno","doi":"10.23919/RFI48793.2019.9111822","DOIUrl":null,"url":null,"abstract":"Modern radio telescopes, like the proposed Square Kilometre Array (SKA), are extremely sensitive and the faint signals they receive can easily be contaminated irreversibly by stray radio frequency interference (RFI). Understanding how radio telescope performance is degraded by RFI is important. In this paper we describe an RFI simulation framework that can be used to generate test stimulus and verify a telescope’s performance. The framework can be used during design to investigate the impact of various RFI scenarios and develop mitigation strategies. As well, it can be used to exercise and test hardware firmware after a system is installed. A prototype of the framework was implemented in the Python computer language to demonstrate the key concepts. Additionally, we outline the framework requirements, describe a suitable software structure and discuss a prototype implementation. As well, we present measurements made to verify the software generates correct test stimulus, for RFI from aircraft distance measuring equipment (DME). The work described was carried out to evaluate the impact of RFI on the Square Kilometre Array, an international effort to build the largest most sensitive radio telescope.","PeriodicalId":111866,"journal":{"name":"2019 RFI Workshop - Coexisting with Radio Frequency Interference (RFI)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework for RFI Simulation and Performance Verification\",\"authors\":\"G. Hovey, Federico Di Vruno\",\"doi\":\"10.23919/RFI48793.2019.9111822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern radio telescopes, like the proposed Square Kilometre Array (SKA), are extremely sensitive and the faint signals they receive can easily be contaminated irreversibly by stray radio frequency interference (RFI). Understanding how radio telescope performance is degraded by RFI is important. In this paper we describe an RFI simulation framework that can be used to generate test stimulus and verify a telescope’s performance. The framework can be used during design to investigate the impact of various RFI scenarios and develop mitigation strategies. As well, it can be used to exercise and test hardware firmware after a system is installed. A prototype of the framework was implemented in the Python computer language to demonstrate the key concepts. Additionally, we outline the framework requirements, describe a suitable software structure and discuss a prototype implementation. As well, we present measurements made to verify the software generates correct test stimulus, for RFI from aircraft distance measuring equipment (DME). The work described was carried out to evaluate the impact of RFI on the Square Kilometre Array, an international effort to build the largest most sensitive radio telescope.\",\"PeriodicalId\":111866,\"journal\":{\"name\":\"2019 RFI Workshop - Coexisting with Radio Frequency Interference (RFI)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 RFI Workshop - Coexisting with Radio Frequency Interference (RFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/RFI48793.2019.9111822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 RFI Workshop - Coexisting with Radio Frequency Interference (RFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/RFI48793.2019.9111822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代射电望远镜,如拟议中的平方公里阵列(SKA),非常敏感,它们接收到的微弱信号很容易被杂散的射频干扰(RFI)不可逆地污染。了解射电望远镜的性能是如何被RFI降低的是很重要的。在本文中,我们描述了一个可用于生成测试刺激和验证望远镜性能的RFI仿真框架。该框架可在设计期间用于调查各种RFI情景的影响并制定缓解策略。此外,它还可以用于在安装系统后运行和测试硬件固件。该框架的原型是用Python计算机语言实现的,以演示关键概念。此外,我们概述了框架需求,描述了一个合适的软件结构,并讨论了一个原型实现。此外,我们还提供了用于验证软件生成正确的测试刺激的测量,用于来自飞机距离测量设备(DME)的RFI。所描述的工作是为了评估RFI对平方公里阵列的影响,这是一项国际努力,旨在建造最大最敏感的射电望远镜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Framework for RFI Simulation and Performance Verification
Modern radio telescopes, like the proposed Square Kilometre Array (SKA), are extremely sensitive and the faint signals they receive can easily be contaminated irreversibly by stray radio frequency interference (RFI). Understanding how radio telescope performance is degraded by RFI is important. In this paper we describe an RFI simulation framework that can be used to generate test stimulus and verify a telescope’s performance. The framework can be used during design to investigate the impact of various RFI scenarios and develop mitigation strategies. As well, it can be used to exercise and test hardware firmware after a system is installed. A prototype of the framework was implemented in the Python computer language to demonstrate the key concepts. Additionally, we outline the framework requirements, describe a suitable software structure and discuss a prototype implementation. As well, we present measurements made to verify the software generates correct test stimulus, for RFI from aircraft distance measuring equipment (DME). The work described was carried out to evaluate the impact of RFI on the Square Kilometre Array, an international effort to build the largest most sensitive radio telescope.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of RFI and RFI Mitigation Techniques in SKA1 Mid Telescope A Band Comparison Investigation for RFI Emission Mitigation by a Mobile Radio Communications Network for the SKA Radio Astronomy Project Bustin’ Makes Me Feel Good: A Low-Cost Cell-Phone Buster for the 850 MHz Band An Approach to Address Residual “Hot Spots” in SMAP RFI-Filtered Data Cyclic Imaging for All-Sky Interference Forecasting with Array Radio Telescopes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1