大型噪声数据集的可视化分析

Nwagwu Honour Chika, Constantinos Orphanides
{"title":"大型噪声数据集的可视化分析","authors":"Nwagwu Honour Chika, Constantinos Orphanides","doi":"10.4018/IJCSSA.2015070102","DOIUrl":null,"url":null,"abstract":"Visual analysis has witnessed a growing acceptance as a method of scientific inquiry in the research community. It is used in qualitative and mixed research methods. Even so, visual data analysis is likely to produce biased results when used in analysing a large and noisy dataset. This can be evident when a data analyst is not able to holistically explore, all the values associated with the objects of interest in a dataset. Consequently, the data analyst may assess inconsistent data as consistent when contradiction associated with the data is not visualised. This work identifies incomplete analysis as a challenge in the visual data analysis of a large and noisy dataset. It considers Formal Concept Analysis FCA tools and techniques and prescribes the mining and visualisation of Incomplete or Inconsistent Data IID when dealing with a large and noisy dataset. It presents an automated approach for transforming IID from a noisy context whose objects are associated with mutually exclusive many-valued attributes, to a formal context.","PeriodicalId":277615,"journal":{"name":"Int. J. Concept. Struct. Smart Appl.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Visual Analysis of a Large and Noisy Dataset\",\"authors\":\"Nwagwu Honour Chika, Constantinos Orphanides\",\"doi\":\"10.4018/IJCSSA.2015070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual analysis has witnessed a growing acceptance as a method of scientific inquiry in the research community. It is used in qualitative and mixed research methods. Even so, visual data analysis is likely to produce biased results when used in analysing a large and noisy dataset. This can be evident when a data analyst is not able to holistically explore, all the values associated with the objects of interest in a dataset. Consequently, the data analyst may assess inconsistent data as consistent when contradiction associated with the data is not visualised. This work identifies incomplete analysis as a challenge in the visual data analysis of a large and noisy dataset. It considers Formal Concept Analysis FCA tools and techniques and prescribes the mining and visualisation of Incomplete or Inconsistent Data IID when dealing with a large and noisy dataset. It presents an automated approach for transforming IID from a noisy context whose objects are associated with mutually exclusive many-valued attributes, to a formal context.\",\"PeriodicalId\":277615,\"journal\":{\"name\":\"Int. J. Concept. Struct. Smart Appl.\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Concept. Struct. Smart Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJCSSA.2015070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Concept. Struct. Smart Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCSSA.2015070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

视觉分析作为一种科学探究的方法,在研究界已被越来越多的人接受。它用于定性和混合研究方法。即便如此,当用于分析大型嘈杂数据集时,可视化数据分析可能会产生有偏差的结果。当数据分析师无法全面探索与数据集中感兴趣的对象相关的所有值时,这一点就很明显了。因此,当与数据相关的矛盾没有可视化时,数据分析师可能会将不一致的数据评估为一致。这项工作将不完整的分析确定为对大型嘈杂数据集进行视觉数据分析的挑战。它考虑了形式概念分析FCA工具和技术,并规定了在处理大型嘈杂数据集时对不完整或不一致数据IID的挖掘和可视化。它提供了一种自动化方法,用于将IID从对象与互斥多值属性相关联的嘈杂上下文转换为正式上下文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual Analysis of a Large and Noisy Dataset
Visual analysis has witnessed a growing acceptance as a method of scientific inquiry in the research community. It is used in qualitative and mixed research methods. Even so, visual data analysis is likely to produce biased results when used in analysing a large and noisy dataset. This can be evident when a data analyst is not able to holistically explore, all the values associated with the objects of interest in a dataset. Consequently, the data analyst may assess inconsistent data as consistent when contradiction associated with the data is not visualised. This work identifies incomplete analysis as a challenge in the visual data analysis of a large and noisy dataset. It considers Formal Concept Analysis FCA tools and techniques and prescribes the mining and visualisation of Incomplete or Inconsistent Data IID when dealing with a large and noisy dataset. It presents an automated approach for transforming IID from a noisy context whose objects are associated with mutually exclusive many-valued attributes, to a formal context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Business Ontology to Integrate Business Architecture and Business Process Management for Healthcare Modeling Embedded System Verification Using Formal Model an Approach Based on the Combined Use of UML and Maude Language On Because and Why: Reasoning with Natural Language Specifying Constraints for Detecting Inconsistencies in A Conceptual Graph Knowledge Base Conceptual Graphs Based Approach for Subjective Answers Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1