拉盖尔-高斯模式噪声图像识别的神经网络

Dmitry P. Bukin, E. Kozlova
{"title":"拉盖尔-高斯模式噪声图像识别的神经网络","authors":"Dmitry P. Bukin, E. Kozlova","doi":"10.1117/12.2631735","DOIUrl":null,"url":null,"abstract":"In this paper, the effect of different noises on Laguerre-Gaussian (LG) modes recognition by convolution neural network (CNN). A dataset of halftone images with LG modes and noises was prepared during the study. It is shown that not only intensity but also type of noise has high influence on classification process. However, presence of noisy images in the training sample allows to increase the recognition accuracy from 50% to 100% in most cases.","PeriodicalId":424251,"journal":{"name":"Optical Technologies for Telecommunications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural network for recognition noisy images of Laguerre-Gaussian modes\",\"authors\":\"Dmitry P. Bukin, E. Kozlova\",\"doi\":\"10.1117/12.2631735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the effect of different noises on Laguerre-Gaussian (LG) modes recognition by convolution neural network (CNN). A dataset of halftone images with LG modes and noises was prepared during the study. It is shown that not only intensity but also type of noise has high influence on classification process. However, presence of noisy images in the training sample allows to increase the recognition accuracy from 50% to 100% in most cases.\",\"PeriodicalId\":424251,\"journal\":{\"name\":\"Optical Technologies for Telecommunications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Technologies for Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2631735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Technologies for Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2631735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了不同噪声对卷积神经网络(CNN)识别拉盖尔-高斯(Laguerre-Gaussian, LG)模式的影响。在研究过程中,制备了具有LG模式和噪声的半色调图像数据集。结果表明,噪声强度和噪声类型对分类过程都有较大影响。然而,在大多数情况下,训练样本中存在噪声图像可以将识别准确率从50%提高到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network for recognition noisy images of Laguerre-Gaussian modes
In this paper, the effect of different noises on Laguerre-Gaussian (LG) modes recognition by convolution neural network (CNN). A dataset of halftone images with LG modes and noises was prepared during the study. It is shown that not only intensity but also type of noise has high influence on classification process. However, presence of noisy images in the training sample allows to increase the recognition accuracy from 50% to 100% in most cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental researches and testing of silica twisted six-GeO2-doped core microstructured optical fiber. Part I: fusion splicing with telecommunication optical fibers and differential mode delay map measurements Silica microstructured optical fiber with centralized inclusion of seven GeO2-doped capillaries and induced twisting. Part II: test and research Student association for specialists in fiber optics and photonics Testing ground for approbation of the methods for fiber-optic communication line trace location OLT virtualization in 5G networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1