以人为中心的个人分析

Youngki Lee, R. Balan
{"title":"以人为中心的个人分析","authors":"Youngki Lee, R. Balan","doi":"10.1145/2611264.2611267","DOIUrl":null,"url":null,"abstract":"The rich context provided by smartphones has enabled many new context-aware applications. However, these applications still need to provide their own mechanisms to interpret low-level sensing data and generate high-level user states. In this paper, we propose the idea of building a personal analytics (PA) layer that will use inputs from multiple lower layer sources, such as sensor data (accelerometers, gyroscopes, etc.), phone data (call logs, application activity, etc.), and online sources (Twitter, Facebook posts, etc.) to generate high-level user contextual states (such as emotions, preferences, and engagements). Developers can then use the PA layer to easily build a new set of interesting and compelling applications. We describe several scenarios enabled by this new layer and present a proposed software architecture. We end with a description of some of the key research challenges that need to be solved to achieve this goal.","PeriodicalId":131326,"journal":{"name":"Proceedings of the 2014 workshop on physical analytics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"The case for human-centric personal analytics\",\"authors\":\"Youngki Lee, R. Balan\",\"doi\":\"10.1145/2611264.2611267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rich context provided by smartphones has enabled many new context-aware applications. However, these applications still need to provide their own mechanisms to interpret low-level sensing data and generate high-level user states. In this paper, we propose the idea of building a personal analytics (PA) layer that will use inputs from multiple lower layer sources, such as sensor data (accelerometers, gyroscopes, etc.), phone data (call logs, application activity, etc.), and online sources (Twitter, Facebook posts, etc.) to generate high-level user contextual states (such as emotions, preferences, and engagements). Developers can then use the PA layer to easily build a new set of interesting and compelling applications. We describe several scenarios enabled by this new layer and present a proposed software architecture. We end with a description of some of the key research challenges that need to be solved to achieve this goal.\",\"PeriodicalId\":131326,\"journal\":{\"name\":\"Proceedings of the 2014 workshop on physical analytics\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 workshop on physical analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2611264.2611267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 workshop on physical analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2611264.2611267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

智能手机提供的丰富上下文使许多新的上下文感知应用成为可能。然而,这些应用程序仍然需要提供自己的机制来解释低级感知数据并生成高级用户状态。在本文中,我们提出了构建个人分析(PA)层的想法,该层将使用来自多个较低层源的输入,例如传感器数据(加速度计,陀螺仪等),电话数据(通话记录,应用程序活动等)和在线源(Twitter, Facebook帖子等)来生成高级用户上下文状态(例如情感,偏好和参与)。然后,开发人员可以使用PA层轻松构建一组新的有趣且引人注目的应用程序。我们描述了这个新层支持的几个场景,并提出了一个建议的软件体系结构。最后,我们描述了实现这一目标需要解决的一些关键研究挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The case for human-centric personal analytics
The rich context provided by smartphones has enabled many new context-aware applications. However, these applications still need to provide their own mechanisms to interpret low-level sensing data and generate high-level user states. In this paper, we propose the idea of building a personal analytics (PA) layer that will use inputs from multiple lower layer sources, such as sensor data (accelerometers, gyroscopes, etc.), phone data (call logs, application activity, etc.), and online sources (Twitter, Facebook posts, etc.) to generate high-level user contextual states (such as emotions, preferences, and engagements). Developers can then use the PA layer to easily build a new set of interesting and compelling applications. We describe several scenarios enabled by this new layer and present a proposed software architecture. We end with a description of some of the key research challenges that need to be solved to achieve this goal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On11: an activity recommendation application to mitigate sedentary lifestyle Proceedings of the 2014 workshop on physical analytics Physical analytics to model health behaviors Session details: Wireless tracking My smartphone knows i am hungry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1