基于视频的车道检测快速消失点估计方法

Burak Benligiray, C. Topal, C. Akinlar
{"title":"基于视频的车道检测快速消失点估计方法","authors":"Burak Benligiray, C. Topal, C. Akinlar","doi":"10.1109/ISM.2012.70","DOIUrl":null,"url":null,"abstract":"Lane detection algorithms constitute a basis for intelligent vehicle systems such as lane tracking and involuntary lane departure detection. In this paper, we propose a simple and video-based lane detection algorithm that uses a fast vanishing point estimation method. The first step of the algorithm is to extract and validate the line segments from the image with a recently proposed line detection algorithm. In the next step, an angle based elimination of line segments is done according to the perspective characteristics of lane markings. This basic operation removes many line segments that belong to irrelevant details on the scene and greatly reduces the number of features to be processed afterwards. Remaining line segments are extrapolated and superimposed to detect the image location where majority of the linear edge features converge. The location found by this efficient operation is assumed to be the vanishing point. Subsequently, an orientation-based removal is done by eliminating the line segments whose extensions do not intersect the vanishing point. The final step is clustering the remaining line segments such that each cluster represents a lane marking or a boundary of the road (i.e. sidewalks, barriers or shoulders). The properties of the line segments that constitute the clusters are fused to represent each cluster with a single line. The nearest two clusters to the vehicle are chosen as the lines that bound the lane that is being driven on. The proposed algorithm works in an average of 12 milliseconds for each frame with 640×480 resolution on a 2.20 GHz Intel CPU. This performance metric shows that the algorithm can be deployed on minimal hardware and still provide real-time performance.","PeriodicalId":282528,"journal":{"name":"2012 IEEE International Symposium on Multimedia","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Video-Based Lane Detection Using a Fast Vanishing Point Estimation Method\",\"authors\":\"Burak Benligiray, C. Topal, C. Akinlar\",\"doi\":\"10.1109/ISM.2012.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lane detection algorithms constitute a basis for intelligent vehicle systems such as lane tracking and involuntary lane departure detection. In this paper, we propose a simple and video-based lane detection algorithm that uses a fast vanishing point estimation method. The first step of the algorithm is to extract and validate the line segments from the image with a recently proposed line detection algorithm. In the next step, an angle based elimination of line segments is done according to the perspective characteristics of lane markings. This basic operation removes many line segments that belong to irrelevant details on the scene and greatly reduces the number of features to be processed afterwards. Remaining line segments are extrapolated and superimposed to detect the image location where majority of the linear edge features converge. The location found by this efficient operation is assumed to be the vanishing point. Subsequently, an orientation-based removal is done by eliminating the line segments whose extensions do not intersect the vanishing point. The final step is clustering the remaining line segments such that each cluster represents a lane marking or a boundary of the road (i.e. sidewalks, barriers or shoulders). The properties of the line segments that constitute the clusters are fused to represent each cluster with a single line. The nearest two clusters to the vehicle are chosen as the lines that bound the lane that is being driven on. The proposed algorithm works in an average of 12 milliseconds for each frame with 640×480 resolution on a 2.20 GHz Intel CPU. This performance metric shows that the algorithm can be deployed on minimal hardware and still provide real-time performance.\",\"PeriodicalId\":282528,\"journal\":{\"name\":\"2012 IEEE International Symposium on Multimedia\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2012.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2012.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

车道检测算法是车道跟踪和非自愿车道偏离检测等智能车辆系统的基础。在本文中,我们提出了一种简单的基于视频的车道检测算法,该算法使用快速消失点估计方法。该算法的第一步是使用最近提出的线段检测算法从图像中提取和验证线段。下一步,根据车道标线的透视特征,进行基于角度的线段消除。这个基本的操作去除了很多属于场景中不相关细节的线段,大大减少了后续需要处理的特征数量。剩余的线段被外推和叠加,以检测大多数线性边缘特征收敛的图像位置。通过这种有效的操作找到的位置被假定为消失点。随后,通过消除其延伸不与消失点相交的线段来进行基于方向的去除。最后一步是对剩下的线段进行聚类,这样每个聚类代表一个车道标记或道路的边界(即人行道、障碍物或肩)。构成集群的线段的属性被融合到用一条线表示每个集群。选择离车辆最近的两个集群作为连接正在行驶的车道的线。该算法在2.20 GHz英特尔CPU上以640×480分辨率平均每帧工作12毫秒。这个性能指标表明,该算法可以部署在最小的硬件上,并且仍然提供实时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Video-Based Lane Detection Using a Fast Vanishing Point Estimation Method
Lane detection algorithms constitute a basis for intelligent vehicle systems such as lane tracking and involuntary lane departure detection. In this paper, we propose a simple and video-based lane detection algorithm that uses a fast vanishing point estimation method. The first step of the algorithm is to extract and validate the line segments from the image with a recently proposed line detection algorithm. In the next step, an angle based elimination of line segments is done according to the perspective characteristics of lane markings. This basic operation removes many line segments that belong to irrelevant details on the scene and greatly reduces the number of features to be processed afterwards. Remaining line segments are extrapolated and superimposed to detect the image location where majority of the linear edge features converge. The location found by this efficient operation is assumed to be the vanishing point. Subsequently, an orientation-based removal is done by eliminating the line segments whose extensions do not intersect the vanishing point. The final step is clustering the remaining line segments such that each cluster represents a lane marking or a boundary of the road (i.e. sidewalks, barriers or shoulders). The properties of the line segments that constitute the clusters are fused to represent each cluster with a single line. The nearest two clusters to the vehicle are chosen as the lines that bound the lane that is being driven on. The proposed algorithm works in an average of 12 milliseconds for each frame with 640×480 resolution on a 2.20 GHz Intel CPU. This performance metric shows that the algorithm can be deployed on minimal hardware and still provide real-time performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detailed Comparative Analysis of VP8 and H.264 Enhancing the MST-CSS Representation Using Robust Geometric Features, for Efficient Content Based Video Retrieval (CBVR) A Standardized Metadata Set for Annotation of Virtual and Remote Laboratories Using Wavelets and Gaussian Mixture Models for Audio Classification A Data Aware Admission Control Technique for Social Live Streams (SOLISs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1