基于二维和三维SIFT描述子融合的通用目标识别

Miaomiao Liu, Xinde Li, J. Dezert, C. Luo
{"title":"基于二维和三维SIFT描述子融合的通用目标识别","authors":"Miaomiao Liu, Xinde Li, J. Dezert, C. Luo","doi":"10.5281/ZENODO.23200","DOIUrl":null,"url":null,"abstract":"This paper proposes a new generic object recognition (GOR) method based on the multiple feature fusion of 2D and 3D SIFT (scale invariant feature transform) descriptors drawn from 2D images and 3D point clouds. We also use trained Support Vector Machine (SVM) classifiers to recognize the objects from the result of the multiple feature fusion. We analyze and evaluate different strategies for making this multiple feature fusion applied to real open-datasets. Our results show that this new GOR method has higher recognition rates than classical methods, even if one has large intra-class variations, or high inter-class similarities of the objects to recognize, which demonstrates the potential interest of this new approach.","PeriodicalId":297288,"journal":{"name":"2015 18th International Conference on Information Fusion (Fusion)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Generic object recognition based on the fusion of 2D and 3D SIFT descriptors\",\"authors\":\"Miaomiao Liu, Xinde Li, J. Dezert, C. Luo\",\"doi\":\"10.5281/ZENODO.23200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new generic object recognition (GOR) method based on the multiple feature fusion of 2D and 3D SIFT (scale invariant feature transform) descriptors drawn from 2D images and 3D point clouds. We also use trained Support Vector Machine (SVM) classifiers to recognize the objects from the result of the multiple feature fusion. We analyze and evaluate different strategies for making this multiple feature fusion applied to real open-datasets. Our results show that this new GOR method has higher recognition rates than classical methods, even if one has large intra-class variations, or high inter-class similarities of the objects to recognize, which demonstrates the potential interest of this new approach.\",\"PeriodicalId\":297288,\"journal\":{\"name\":\"2015 18th International Conference on Information Fusion (Fusion)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 18th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.23200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 18th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.23200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种基于二维和三维SIFT(尺度不变特征变换)描述子的多特征融合的通用目标识别方法。我们还使用训练好的支持向量机分类器从多特征融合的结果中识别目标。我们分析和评估了将这种多特征融合应用于实际开放数据集的不同策略。结果表明,该方法在类内变化较大或类间相似度较高的情况下,具有较高的识别率,表明该方法具有潜在的研究价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generic object recognition based on the fusion of 2D and 3D SIFT descriptors
This paper proposes a new generic object recognition (GOR) method based on the multiple feature fusion of 2D and 3D SIFT (scale invariant feature transform) descriptors drawn from 2D images and 3D point clouds. We also use trained Support Vector Machine (SVM) classifiers to recognize the objects from the result of the multiple feature fusion. We analyze and evaluate different strategies for making this multiple feature fusion applied to real open-datasets. Our results show that this new GOR method has higher recognition rates than classical methods, even if one has large intra-class variations, or high inter-class similarities of the objects to recognize, which demonstrates the potential interest of this new approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information fusion with topological event spaces A graph-based evidence theory for assessing risk A real Z-box experiment for testing Zadeh's example On the quality estimation of optimal multiple criteria data association solutions Generic object recognition based on the fusion of 2D and 3D SIFT descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1