部分遵从下的公平机器学习

Jessica Dai, S. Fazelpour, Zachary Chase Lipton
{"title":"部分遵从下的公平机器学习","authors":"Jessica Dai, S. Fazelpour, Zachary Chase Lipton","doi":"10.1145/3461702.3462521","DOIUrl":null,"url":null,"abstract":"Typically, fair machine learning research focuses on a single decision maker and assumes that the underlying population is stationary. However, many of the critical domains motivating this work are characterized by competitive marketplaces with many decision makers. Realistically, we might expect only a subset of them to adopt any non-compulsory fairness-conscious policy, a situation that political philosophers call partial compliance. This possibility raises important questions: how does partial compliance and the consequent strategic behavior of decision subjects affect the allocation outcomes? If k% of employers were to voluntarily adopt a fairness-promoting intervention, should we expect k% progress (in aggregate) towards the benefits of universal adoption, or will the dynamics of partial compliance wash out the hoped-for benefits? How might adopting a global (versus local) perspective impact the conclusions of an auditor? In this paper, we propose a simple model of an employment market, leveraging simulation as a tool to explore the impact of both interaction effects and incentive effects on outcomes and auditing metrics. Our key findings are that at equilibrium: (1) partial compliance by k% of employers can result in far less than proportional (k%) progress towards the full compliance outcomes; (2) the gap is more severe when fair employers match global (vs local) statistics; (3) choices of local vs global statistics can paint dramatically different pictures of the performance vis-a-vis fairness desiderata of compliant versus non-compliant employers; (4) partial compliance based on local parity measures can induce extreme segregation. Finally, we discuss implications for auditors and insights concerning the design of regulatory frameworks.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fair Machine Learning Under Partial Compliance\",\"authors\":\"Jessica Dai, S. Fazelpour, Zachary Chase Lipton\",\"doi\":\"10.1145/3461702.3462521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typically, fair machine learning research focuses on a single decision maker and assumes that the underlying population is stationary. However, many of the critical domains motivating this work are characterized by competitive marketplaces with many decision makers. Realistically, we might expect only a subset of them to adopt any non-compulsory fairness-conscious policy, a situation that political philosophers call partial compliance. This possibility raises important questions: how does partial compliance and the consequent strategic behavior of decision subjects affect the allocation outcomes? If k% of employers were to voluntarily adopt a fairness-promoting intervention, should we expect k% progress (in aggregate) towards the benefits of universal adoption, or will the dynamics of partial compliance wash out the hoped-for benefits? How might adopting a global (versus local) perspective impact the conclusions of an auditor? In this paper, we propose a simple model of an employment market, leveraging simulation as a tool to explore the impact of both interaction effects and incentive effects on outcomes and auditing metrics. Our key findings are that at equilibrium: (1) partial compliance by k% of employers can result in far less than proportional (k%) progress towards the full compliance outcomes; (2) the gap is more severe when fair employers match global (vs local) statistics; (3) choices of local vs global statistics can paint dramatically different pictures of the performance vis-a-vis fairness desiderata of compliant versus non-compliant employers; (4) partial compliance based on local parity measures can induce extreme segregation. Finally, we discuss implications for auditors and insights concerning the design of regulatory frameworks.\",\"PeriodicalId\":197336,\"journal\":{\"name\":\"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3461702.3462521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461702.3462521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

通常,公平的机器学习研究只关注一个决策者,并假设潜在的人口是平稳的。然而,推动这项工作的许多关键领域的特点是具有许多决策者的竞争性市场。实际上,我们可能只期望他们中的一部分人采取任何非强制性的公平意识政策,这种情况被政治哲学家称为部分服从。这种可能性提出了重要的问题:决策主体的部分服从和随之而来的战略行为如何影响分配结果?如果k%的雇主自愿采取促进公平的干预措施,我们是否应该期待k%的进展(总的来说)朝着普遍采用的好处,或者部分遵守的动态会冲毁希望的好处?采用全局视角(相对于局部视角)会如何影响审核员的结论?在本文中,我们提出了一个简单的就业市场模型,利用模拟作为工具来探索互动效应和激励效应对结果和审计指标的影响。我们的主要发现是,在均衡状态下:(1)k%的雇主的部分合规可能导致远低于比例(k%)的进步,以实现完全合规的结果;(2)当公平雇主匹配全球(相对于本地)统计数据时,差距会更大;(3)本地和全球统计数据的选择可以描绘出合规雇主和不合规雇主的绩效与公平期望之间的巨大差异;(4)基于局部宇称测度的局部服从会导致极端偏析。最后,我们讨论了对审计师的影响以及对监管框架设计的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fair Machine Learning Under Partial Compliance
Typically, fair machine learning research focuses on a single decision maker and assumes that the underlying population is stationary. However, many of the critical domains motivating this work are characterized by competitive marketplaces with many decision makers. Realistically, we might expect only a subset of them to adopt any non-compulsory fairness-conscious policy, a situation that political philosophers call partial compliance. This possibility raises important questions: how does partial compliance and the consequent strategic behavior of decision subjects affect the allocation outcomes? If k% of employers were to voluntarily adopt a fairness-promoting intervention, should we expect k% progress (in aggregate) towards the benefits of universal adoption, or will the dynamics of partial compliance wash out the hoped-for benefits? How might adopting a global (versus local) perspective impact the conclusions of an auditor? In this paper, we propose a simple model of an employment market, leveraging simulation as a tool to explore the impact of both interaction effects and incentive effects on outcomes and auditing metrics. Our key findings are that at equilibrium: (1) partial compliance by k% of employers can result in far less than proportional (k%) progress towards the full compliance outcomes; (2) the gap is more severe when fair employers match global (vs local) statistics; (3) choices of local vs global statistics can paint dramatically different pictures of the performance vis-a-vis fairness desiderata of compliant versus non-compliant employers; (4) partial compliance based on local parity measures can induce extreme segregation. Finally, we discuss implications for auditors and insights concerning the design of regulatory frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beyond Reasonable Doubt: Improving Fairness in Budget-Constrained Decision Making using Confidence Thresholds Measuring Automated Influence: Between Empirical Evidence and Ethical Values Artificial Intelligence and the Purpose of Social Systems Ethically Compliant Planning within Moral Communities Co-design and Ethical Artificial Intelligence for Health: Myths and Misconceptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1