{"title":"构建时空统计形状模型观察人脑形状的时空变化","authors":"S. Alam, Syoji Kobashi","doi":"10.5772/INTECHOPEN.80592","DOIUrl":null,"url":null,"abstract":"This chapter introduces a spatiotemporal statistical shape model (stSSM) using brain MR image which will represent not only the statistical variability of shape but also a temporal change of the statistical variance with time. The proposed method applies expectation- maximization (EM)-based weighted principal component analysis (WPCA) using a temporal weight function, where E-step estimates Eigenvalues of every data using temporal Eigenvectors, and M-step updates Eigenvectors to maximize the variance. The method constructs stSSM whose Eigenvectors change with time. By assigning a predefined weight parameter for each subject according to subjects’ age, it calculates the weighted variance for time-specific stSSM. To validate the method, this study employed 105 adult subjects (age: 30–84 years old with mean ± SD = 60.61 ± 16.97) from OASIS database. stSSM constructed for time point 40–80 with a step of 2. The proposed method allows the characterization of typical deformation patterns and subject-specific shape changes in repeated time-series observations of several subjects where the modeling performance was observed by optimizing variance.","PeriodicalId":363789,"journal":{"name":"Non-Invasive Diagnostic Methods - Image Processing","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatiotemporal Statistical Shape Model Construction for the Observation of Temporal Change in Human Brain Shape\",\"authors\":\"S. Alam, Syoji Kobashi\",\"doi\":\"10.5772/INTECHOPEN.80592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter introduces a spatiotemporal statistical shape model (stSSM) using brain MR image which will represent not only the statistical variability of shape but also a temporal change of the statistical variance with time. The proposed method applies expectation- maximization (EM)-based weighted principal component analysis (WPCA) using a temporal weight function, where E-step estimates Eigenvalues of every data using temporal Eigenvectors, and M-step updates Eigenvectors to maximize the variance. The method constructs stSSM whose Eigenvectors change with time. By assigning a predefined weight parameter for each subject according to subjects’ age, it calculates the weighted variance for time-specific stSSM. To validate the method, this study employed 105 adult subjects (age: 30–84 years old with mean ± SD = 60.61 ± 16.97) from OASIS database. stSSM constructed for time point 40–80 with a step of 2. The proposed method allows the characterization of typical deformation patterns and subject-specific shape changes in repeated time-series observations of several subjects where the modeling performance was observed by optimizing variance.\",\"PeriodicalId\":363789,\"journal\":{\"name\":\"Non-Invasive Diagnostic Methods - Image Processing\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Invasive Diagnostic Methods - Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.80592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Invasive Diagnostic Methods - Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatiotemporal Statistical Shape Model Construction for the Observation of Temporal Change in Human Brain Shape
This chapter introduces a spatiotemporal statistical shape model (stSSM) using brain MR image which will represent not only the statistical variability of shape but also a temporal change of the statistical variance with time. The proposed method applies expectation- maximization (EM)-based weighted principal component analysis (WPCA) using a temporal weight function, where E-step estimates Eigenvalues of every data using temporal Eigenvectors, and M-step updates Eigenvectors to maximize the variance. The method constructs stSSM whose Eigenvectors change with time. By assigning a predefined weight parameter for each subject according to subjects’ age, it calculates the weighted variance for time-specific stSSM. To validate the method, this study employed 105 adult subjects (age: 30–84 years old with mean ± SD = 60.61 ± 16.97) from OASIS database. stSSM constructed for time point 40–80 with a step of 2. The proposed method allows the characterization of typical deformation patterns and subject-specific shape changes in repeated time-series observations of several subjects where the modeling performance was observed by optimizing variance.