大相位裕度波德地块成形的邻域优化方法

Bo Shang, Chengdong Wu, Y. Chen
{"title":"大相位裕度波德地块成形的邻域优化方法","authors":"Bo Shang, Chengdong Wu, Y. Chen","doi":"10.1115/detc2019-97288","DOIUrl":null,"url":null,"abstract":"\n When controlling complex non-linear systems, classic flat-phase specification (FPS) method for tuning fractional order controllers employs graphic method. However, following this step of graphic method, the tuning method cannot work automatically. In this study, a novel optimization method is employed to enable it to work automatically. An approximation is used to avoid solving derivatives, thereby simplify computation of the method. Frequency-domain analysis reveals that, compared with the classic FPS method, this method is capable of covering more conditions, especially those with larger phase margin. A linear model and a non-linear model (Simscape) are used to demonstrate that the proposed method can ensure both transient performance and robustness. For the relevant working folder, please refer to: http://bit.ly/npm-simscape-code. For video demonstrations, please click: http://bit.ly/npm_simscape_video.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neighborhood Optimization Method for Shaping Bode Plot With Larger Phase Margin\",\"authors\":\"Bo Shang, Chengdong Wu, Y. Chen\",\"doi\":\"10.1115/detc2019-97288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n When controlling complex non-linear systems, classic flat-phase specification (FPS) method for tuning fractional order controllers employs graphic method. However, following this step of graphic method, the tuning method cannot work automatically. In this study, a novel optimization method is employed to enable it to work automatically. An approximation is used to avoid solving derivatives, thereby simplify computation of the method. Frequency-domain analysis reveals that, compared with the classic FPS method, this method is capable of covering more conditions, especially those with larger phase margin. A linear model and a non-linear model (Simscape) are used to demonstrate that the proposed method can ensure both transient performance and robustness. For the relevant working folder, please refer to: http://bit.ly/npm-simscape-code. For video demonstrations, please click: http://bit.ly/npm_simscape_video.\",\"PeriodicalId\":166402,\"journal\":{\"name\":\"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在控制复杂非线性系统时,分数阶控制器的经典平相位规范(FPS)整定方法采用图形化方法。但是,遵循图形化方法的这一步,调优方法不能自动工作。在本研究中,采用了一种新颖的优化方法,使其能够自动工作。采用近似法避免了求导,从而简化了计算过程。频域分析表明,与经典的FPS方法相比,该方法能够覆盖更多的情况,特别是相位裕度较大的情况。通过一个线性模型和一个非线性模型(Simscape)验证了该方法既能保证暂态性能又能保证鲁棒性。有关工作文件夹,请参阅:http://bit.ly/npm-simscape-code。视频演示请点击:http://bit.ly/npm_simscape_video。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neighborhood Optimization Method for Shaping Bode Plot With Larger Phase Margin
When controlling complex non-linear systems, classic flat-phase specification (FPS) method for tuning fractional order controllers employs graphic method. However, following this step of graphic method, the tuning method cannot work automatically. In this study, a novel optimization method is employed to enable it to work automatically. An approximation is used to avoid solving derivatives, thereby simplify computation of the method. Frequency-domain analysis reveals that, compared with the classic FPS method, this method is capable of covering more conditions, especially those with larger phase margin. A linear model and a non-linear model (Simscape) are used to demonstrate that the proposed method can ensure both transient performance and robustness. For the relevant working folder, please refer to: http://bit.ly/npm-simscape-code. For video demonstrations, please click: http://bit.ly/npm_simscape_video.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractional-Order Extreme Learning Machine With Mittag-Leffler Distribution Heuristic Approach for Warehouse Resources and Production Planning Optimization: An Industry Case Study Electrode-Skin Impedance Component Estimation in the Time-Domain Chattering-Free Finite-Time Stability of a Class of Fractional-Order Nonlinear Systems Modeling, Simulation and Assessment of a Hybrid Electric Ferry: Case Study for Mid-Size Ferry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1