{"title":"利用机器学习技术从人类血液中识别糖尿病疾病","authors":"H. Khatoon, Dipti Verma, Ankit Arora","doi":"10.1109/ICSTCEE49637.2020.9277006","DOIUrl":null,"url":null,"abstract":"Diabetes among one of the most common diseases occurs in human beings due to imbalance of insulin level in blood. The early detection of diabetes is very necessary as it can affect many internal parts and immune system of human body silently. In this paper, we are comparing various machine learning and neural network based approaches that are applied on publically available datasets. Here, we have used two datasets for experiments 1st dataset is UCI dataset and other is PIMA Indian dataset then we have performed lots of experiments using different machine learning classifiers and neural network models to observe the performance of each classifier. After experiments, the highest accuracy of identification obtained from decision tree method which is 99.8% for dataset1 and for dataset 2 the highest accuracy was obtained from back propagation neural network model which is 80.8 %.","PeriodicalId":113845,"journal":{"name":"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identification of Diabetes Disease from Human Blood Using Machine Learning Techniques\",\"authors\":\"H. Khatoon, Dipti Verma, Ankit Arora\",\"doi\":\"10.1109/ICSTCEE49637.2020.9277006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes among one of the most common diseases occurs in human beings due to imbalance of insulin level in blood. The early detection of diabetes is very necessary as it can affect many internal parts and immune system of human body silently. In this paper, we are comparing various machine learning and neural network based approaches that are applied on publically available datasets. Here, we have used two datasets for experiments 1st dataset is UCI dataset and other is PIMA Indian dataset then we have performed lots of experiments using different machine learning classifiers and neural network models to observe the performance of each classifier. After experiments, the highest accuracy of identification obtained from decision tree method which is 99.8% for dataset1 and for dataset 2 the highest accuracy was obtained from back propagation neural network model which is 80.8 %.\",\"PeriodicalId\":113845,\"journal\":{\"name\":\"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCEE49637.2020.9277006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCEE49637.2020.9277006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of Diabetes Disease from Human Blood Using Machine Learning Techniques
Diabetes among one of the most common diseases occurs in human beings due to imbalance of insulin level in blood. The early detection of diabetes is very necessary as it can affect many internal parts and immune system of human body silently. In this paper, we are comparing various machine learning and neural network based approaches that are applied on publically available datasets. Here, we have used two datasets for experiments 1st dataset is UCI dataset and other is PIMA Indian dataset then we have performed lots of experiments using different machine learning classifiers and neural network models to observe the performance of each classifier. After experiments, the highest accuracy of identification obtained from decision tree method which is 99.8% for dataset1 and for dataset 2 the highest accuracy was obtained from back propagation neural network model which is 80.8 %.