改进Marangoni推进机器人直线运动的弯曲关节:设计与实验

Bokeon Kwak, Dongyoung Lee, J. Bae
{"title":"改进Marangoni推进机器人直线运动的弯曲关节:设计与实验","authors":"Bokeon Kwak, Dongyoung Lee, J. Bae","doi":"10.1109/BIOROB.2018.8488118","DOIUrl":null,"url":null,"abstract":"Some aquatic insects can rapidly dash over the water surface by secreting chemical material that lowers the surface tension behind. This locomotion is commonly known as Marangoni propulsion, and we built a non-tethered miniature robot inspired by their mobility. The robot had six circular footpads with equilateral triangular cross section, and weighed 14.8 gram including on-board electronics, a battery, and a servo motor. Although the robot successfully skimmed over the water surface by dripping alcohol (e.g., 3-Methyl-l-butanol), the robot could not maintain a linear motion by itself. Therefore, we designed and attached flexural joints at the hind legs of the robot to compensate its linear motion; the asymmetric force applied to the hind legs subsequently induced another counter moment due to the bending of flexural joints. During the experiments, these joints were effective at reducing undesired lateral deviation more than 3-fold compared to one without flexural joints. Also, the characteristics of the robot's locomotion was similar with the locomotion of aquatic arthropods according to the dimensionless number analysis.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Flexural Joints for Improved Linear Motion of a Marangoni Propulsion Robot: Design and Experiment\",\"authors\":\"Bokeon Kwak, Dongyoung Lee, J. Bae\",\"doi\":\"10.1109/BIOROB.2018.8488118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some aquatic insects can rapidly dash over the water surface by secreting chemical material that lowers the surface tension behind. This locomotion is commonly known as Marangoni propulsion, and we built a non-tethered miniature robot inspired by their mobility. The robot had six circular footpads with equilateral triangular cross section, and weighed 14.8 gram including on-board electronics, a battery, and a servo motor. Although the robot successfully skimmed over the water surface by dripping alcohol (e.g., 3-Methyl-l-butanol), the robot could not maintain a linear motion by itself. Therefore, we designed and attached flexural joints at the hind legs of the robot to compensate its linear motion; the asymmetric force applied to the hind legs subsequently induced another counter moment due to the bending of flexural joints. During the experiments, these joints were effective at reducing undesired lateral deviation more than 3-fold compared to one without flexural joints. Also, the characteristics of the robot's locomotion was similar with the locomotion of aquatic arthropods according to the dimensionless number analysis.\",\"PeriodicalId\":382522,\"journal\":{\"name\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2018.8488118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8488118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

一些水生昆虫可以通过分泌化学物质来降低背后的表面张力,从而在水面上快速奔跑。这种运动通常被称为马兰戈尼推进,我们受其机动性的启发,制造了一个非系绳微型机器人。该机器人有6个等边三角形横截面的圆形脚垫,包括车载电子设备、电池和伺服电机在内,总重量为14.8克。虽然机器人通过滴入酒精(如3-甲基-l-丁醇)成功地掠过水面,但机器人本身无法保持直线运动。因此,我们在机器人的后腿处设计并安装了弯曲关节,以补偿其直线运动;施加在后腿上的不对称力随后由于弯曲关节的弯曲引起了另一个反力矩。在实验中,与没有弯曲关节的关节相比,这些关节有效地减少了不希望的横向偏差3倍以上。通过无量纲数分析,机器人的运动特征与水生节肢动物的运动特征相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexural Joints for Improved Linear Motion of a Marangoni Propulsion Robot: Design and Experiment
Some aquatic insects can rapidly dash over the water surface by secreting chemical material that lowers the surface tension behind. This locomotion is commonly known as Marangoni propulsion, and we built a non-tethered miniature robot inspired by their mobility. The robot had six circular footpads with equilateral triangular cross section, and weighed 14.8 gram including on-board electronics, a battery, and a servo motor. Although the robot successfully skimmed over the water surface by dripping alcohol (e.g., 3-Methyl-l-butanol), the robot could not maintain a linear motion by itself. Therefore, we designed and attached flexural joints at the hind legs of the robot to compensate its linear motion; the asymmetric force applied to the hind legs subsequently induced another counter moment due to the bending of flexural joints. During the experiments, these joints were effective at reducing undesired lateral deviation more than 3-fold compared to one without flexural joints. Also, the characteristics of the robot's locomotion was similar with the locomotion of aquatic arthropods according to the dimensionless number analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insect-Inspired Body Size Learning Model on a Humanoid Robot Yaw Postural Perturbation Through Robotic Platform: Aging Effects on Muscle Synergies Optimization-Based Analysis of a Cartwheel Quantifying Human Autonomy Recovery During Ankle Robot-Assisted Reversal of Foot Drop After Stroke ExoBoot, a Soft Inflatable Robotic Boot to Assist Ankle During Walking: Design, Characterization and Preliminary Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1