{"title":"改进Marangoni推进机器人直线运动的弯曲关节:设计与实验","authors":"Bokeon Kwak, Dongyoung Lee, J. Bae","doi":"10.1109/BIOROB.2018.8488118","DOIUrl":null,"url":null,"abstract":"Some aquatic insects can rapidly dash over the water surface by secreting chemical material that lowers the surface tension behind. This locomotion is commonly known as Marangoni propulsion, and we built a non-tethered miniature robot inspired by their mobility. The robot had six circular footpads with equilateral triangular cross section, and weighed 14.8 gram including on-board electronics, a battery, and a servo motor. Although the robot successfully skimmed over the water surface by dripping alcohol (e.g., 3-Methyl-l-butanol), the robot could not maintain a linear motion by itself. Therefore, we designed and attached flexural joints at the hind legs of the robot to compensate its linear motion; the asymmetric force applied to the hind legs subsequently induced another counter moment due to the bending of flexural joints. During the experiments, these joints were effective at reducing undesired lateral deviation more than 3-fold compared to one without flexural joints. Also, the characteristics of the robot's locomotion was similar with the locomotion of aquatic arthropods according to the dimensionless number analysis.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Flexural Joints for Improved Linear Motion of a Marangoni Propulsion Robot: Design and Experiment\",\"authors\":\"Bokeon Kwak, Dongyoung Lee, J. Bae\",\"doi\":\"10.1109/BIOROB.2018.8488118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some aquatic insects can rapidly dash over the water surface by secreting chemical material that lowers the surface tension behind. This locomotion is commonly known as Marangoni propulsion, and we built a non-tethered miniature robot inspired by their mobility. The robot had six circular footpads with equilateral triangular cross section, and weighed 14.8 gram including on-board electronics, a battery, and a servo motor. Although the robot successfully skimmed over the water surface by dripping alcohol (e.g., 3-Methyl-l-butanol), the robot could not maintain a linear motion by itself. Therefore, we designed and attached flexural joints at the hind legs of the robot to compensate its linear motion; the asymmetric force applied to the hind legs subsequently induced another counter moment due to the bending of flexural joints. During the experiments, these joints were effective at reducing undesired lateral deviation more than 3-fold compared to one without flexural joints. Also, the characteristics of the robot's locomotion was similar with the locomotion of aquatic arthropods according to the dimensionless number analysis.\",\"PeriodicalId\":382522,\"journal\":{\"name\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2018.8488118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8488118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexural Joints for Improved Linear Motion of a Marangoni Propulsion Robot: Design and Experiment
Some aquatic insects can rapidly dash over the water surface by secreting chemical material that lowers the surface tension behind. This locomotion is commonly known as Marangoni propulsion, and we built a non-tethered miniature robot inspired by their mobility. The robot had six circular footpads with equilateral triangular cross section, and weighed 14.8 gram including on-board electronics, a battery, and a servo motor. Although the robot successfully skimmed over the water surface by dripping alcohol (e.g., 3-Methyl-l-butanol), the robot could not maintain a linear motion by itself. Therefore, we designed and attached flexural joints at the hind legs of the robot to compensate its linear motion; the asymmetric force applied to the hind legs subsequently induced another counter moment due to the bending of flexural joints. During the experiments, these joints were effective at reducing undesired lateral deviation more than 3-fold compared to one without flexural joints. Also, the characteristics of the robot's locomotion was similar with the locomotion of aquatic arthropods according to the dimensionless number analysis.