高光谱遥感影像稀疏子空间聚类中空间信息的目标融合

Jiaqiyu Zhan, Yuesheng Zhu, Zhiqiang Bai
{"title":"高光谱遥感影像稀疏子空间聚类中空间信息的目标融合","authors":"Jiaqiyu Zhan, Yuesheng Zhu, Zhiqiang Bai","doi":"10.1109/ICIP40778.2020.9191336","DOIUrl":null,"url":null,"abstract":"Methods based on sparse subspace clustering (SSC) have shown great potential for hyperspectral image (HSI) clustering. However their performance is limited due to the complex spatial-spectral structure in HSIs. In this paper, a spatial best-fit direction (SBFD) algorithm is proposed to update the coefficients obtained from sparse representation to more discriminant features by integrating the spatial-contextual information given by the best-fit pixel of each target pixel. Also, SBFD is more targeted by searching for the best-fit direction than directly using the local window to do max pooling. The proposed SBFD was tested on two widely used hyperspectral dataset, the experimental results indicate its improvement in the clustering accuracy and spatial homogeneity.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted Incorporating Spatial Information in Sparse Subspace Clustering of Hyperspectral Remote Sensing Images\",\"authors\":\"Jiaqiyu Zhan, Yuesheng Zhu, Zhiqiang Bai\",\"doi\":\"10.1109/ICIP40778.2020.9191336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods based on sparse subspace clustering (SSC) have shown great potential for hyperspectral image (HSI) clustering. However their performance is limited due to the complex spatial-spectral structure in HSIs. In this paper, a spatial best-fit direction (SBFD) algorithm is proposed to update the coefficients obtained from sparse representation to more discriminant features by integrating the spatial-contextual information given by the best-fit pixel of each target pixel. Also, SBFD is more targeted by searching for the best-fit direction than directly using the local window to do max pooling. The proposed SBFD was tested on two widely used hyperspectral dataset, the experimental results indicate its improvement in the clustering accuracy and spatial homogeneity.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于稀疏子空间聚类(SSC)的方法在高光谱图像聚类中显示出巨大的潜力。然而,由于hsi中复杂的空间光谱结构,限制了它们的性能。本文提出了一种空间最佳拟合方向(SBFD)算法,通过整合每个目标像素的最佳拟合像素所给出的空间上下文信息,将稀疏表示得到的系数更新为更具判别性的特征。与直接使用本地窗口进行最大池化相比,SBFD通过寻找最适合的方向更有针对性。在两个广泛使用的高光谱数据集上进行了测试,实验结果表明该方法在聚类精度和空间均匀性方面都有提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Targeted Incorporating Spatial Information in Sparse Subspace Clustering of Hyperspectral Remote Sensing Images
Methods based on sparse subspace clustering (SSC) have shown great potential for hyperspectral image (HSI) clustering. However their performance is limited due to the complex spatial-spectral structure in HSIs. In this paper, a spatial best-fit direction (SBFD) algorithm is proposed to update the coefficients obtained from sparse representation to more discriminant features by integrating the spatial-contextual information given by the best-fit pixel of each target pixel. Also, SBFD is more targeted by searching for the best-fit direction than directly using the local window to do max pooling. The proposed SBFD was tested on two widely used hyperspectral dataset, the experimental results indicate its improvement in the clustering accuracy and spatial homogeneity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1